Linear Actuators, Lead Screws and Nuts

Overview

1. Thread overview

2. Linear actuators

3. Lead screws

4. Threaded nuts

5. Axial play

8. Service life

1. Thread overview

Linear actuators cover a wide variety of application requirements with different lead screws. Nanotec offers a broad range of screws – both ACME and trapezoidal screws.

- Standard = available on Nanotec homepage, kept on stock
- Non-standard = not available on Nanotec homepage, only high-volume projects

	Diame mm (in	Lead mm (inch) ter ich)	0,6096 (0,024")	0,635 (0,025")	0,79375 (0,03125")	1 (0,03937")	1,2192 (0,048")	1,27 (0,05")	1,5875 (0,0625")	2 (0,07874")	2,4384 (0,096")	2,54 (0,1")	3,175 (0,125")	4 (0,15748")	4,8768 (0,192")	5,08 (0,2")	6 (0,23622")	6,35 (0,25")	10,16 (0,4")	12,7 (0,5")
NEMA 8 (20 mm)	3,5	(69/500'') (0,138'')	UEAP			TDBA				UECB				UEEB						
NEMA 11 (28 mm)	4,76	(3/16'') (0,1875'')		UGAQ				UGBG				UGCN				UGFC				
	5	(0,19685'')								тнса										
NEMA 14 (35 mm) NEMA 17 (42 mm)	5,56	(7/32'') (0,21875'')	UIAP				UIBF				UICL				UIEV					
	6	(0,23622'')				тјва				TJCA										
	6,35	(1/4'') (0,25'')			UKAS				UKBN				UKDE					UKGI		
NEMA 23	9,53	(3/8'') (0,375'')						UQBG				UQCN				UQFC			UQKE	UQMS
(56 mm)	10	(0,393701")								TSCA							TSGA			

Standard Nicht-Standard

Thread matrix

2. Linear actuators

2.1 Types of linear actuators

Non-captive (LA...)

- Customized screws
- Long strokes
- Anti-rotation / guidance of the screw required

Captive (LGA...)

- Easy and ready to use
- Strokes of up to 70 mm
- Anti-rotation built-in

External (LSA...)

- No traversing screw
- Compact design
- Anti-rotation / guidance of the nut required

2.2 Design of linear actuators

2.3 New line of linear actuators

- Better price
- About 20% more force / torque
- Connector instead of cable
- Available with or without second shaft
- More precise and compact
- Anti-rotation for captive linear actuators

Series	NEMA	Diameter [mm]	Lead [mm]	Resolution [µm/step]	Max. force [N]	Max. speed [mm/s]
20	8	3.50	0.61 - 4.00	3.0 - 20.0	Up to 46	Up to 60
28	11	4.76 - 5.00	0.635 - 5.08	3.2 - 25.4	Up to 210	Up to 100
42	17	5.56 - 6.35	0.79 - 6.35	4.0 - 31.8	Up to 470	Up to 100

2.4 Comparison of old and new linear actuators

- Linear actuator: NEMA 17, size S, 1.4 A per winding
- Thread = TJBA (T6x1)

3. Lead screws

- Lead screws manufactured in China
- Better price
- More variety
- Better control over dimensions and quality
- DLC coating for high-volume projects possible (about +20% service life)

4. Threaded nuts

- Change from PEEK to POM
- Better price
- Easier to manufacture
- Longer service life
- Less operating noise
- Less dust generation
- Anti-backlash nuts to reduce axial play

5. Axial play

- Axial play = necessary gap between screw and nut
- Axial play will occur only at the start or if the direction changes
- Axial play on Nanotec homepage is theoretical value (calculated from the tolerances from which we produce the screws and nuts)
- Axial play can be avoided with permanent force in one direction or an anti-backlash nut

⁼ Max. axial play: +/-0.05

6. Thread lead

- Choice of the thread is the most important factor (apart from size of the actuator)
- Screws are assigned to different NEMA sizes according to their diameter
- Lead of the screw determines:
 - Force and speed of the actuator
 - Service life
 - Screw efficiency
 - Self-locking capability
- Rule of thumb:

Higher lead results in higher speed, less force and longer service life.

7. Self-locking

 Self-locking screws don't rotate if only an axial force is applied (because of the friction angle of the thread)

Self-locking: friction angle > lead angle

$$\arctan \frac{\mu}{\cos(\frac{\alpha}{2})} > \arctan \frac{P}{\pi * d}$$

• Rule of thumb:

Self-locking: lead < 1/3 diameter

- Lubrication can influence self-locking
- Advantageous for applications where the motor needs to hold the load without current
- Example threads: TDBA (T3,5x1), TJBA (T6x1), UGAQ (ACME4.76x0.635), UKAS (ACME6.35x0.79)

8. Service life

- The service life of linear actuators depends on load, lubrication, environment, etc.
- Linear actuators are designed such that the female thread will wear out first
- Every movement of the screw inside the female thread will wear out the thread flanks
- Failure is a result from a too big step error or a complete destruction of the thread flanks

Factor	Service life if factor increases
Force	-
Speed	-
Temperature	-
Lubrication	+
Thread lengths	+
Thread lead	+

8.1 Calculation of service life

- Service life is calculated with the help of a tool* designed by Nanotec
- Service life estimates are backed up by service life tests
- Output in km, hours, days or cycles

Required Information

- Linear actuator type (LA, LGA or LSA)
- Linear actuator size (NEMA)
- Force
- Speed

Additional Information (optional)

- Stroke
- Required service life

*Tool is for Nanotec internal use only

	Profile 1	Profile 2	Profile 3
Selection of thread code	TSGA		
	(10x6)		

Input								
Symbol	Description	Unit	Value 1	Value 2	Value 3			
F	Axial force	N	200.0					
vf	Speed	mm/s	30.0					
I	Length of female thread	mm	22.0					
h	Stroke (2 strokes = 1 cycle)	mm		50.0				

	Constants							
Symbol	Description	Unit	Value					
х	Ratio of bearing thread flanks	-	0.75					
k	Wear rate POM/steel	10^-6 mm ³ /Nm	1.03					
hzul,%	Permissible wear depth	%	30					
pzul	p-limit POM material	N/mm ² = MPa	5.00					
pvzul	pv-limit POM material	MPa*m/s	0.40					

	Output								
Symbol	Description	Unit	Value 1	Value 2	Value 3				
р	Contact pressure	N/mm ² = MPa	1.1069						
pv	pv-value	MPa*m/s	0.1485						
L	Service life in days	d	33						
L	Service life in hours	h	798						
Lh	Service life in cycles	-	861.429						
L	Service life	km	86.14						

Service life calculation tool

8.2 Example calculation of service life

- Application requirement example: 80 N, 60 mm/s, NEMA 17, LSA, best possible service life
- Linear actuator: LSA421S14 \rightarrow external nut, thread length = 19.05 mm
- Possible threads to fulfill requirements: UIEV (ACME5.56x4.88), UKGI (ACME6.35x6.35)

- Service life calculation: UIEV = 56.29 km; UKGI = 99.39 km
- Proposal: <u>LSA421S14-A-UKGI-152</u> (+ LSNUT-AAAE-UKGI)

8.3 Example calculation 2

- Application requirement example: **10 mm/s, NEMA 11, LGA, 15 km service life required**
- Linear actuator: LGA281S10 \rightarrow internal nut, thread length = 15 mm
- Possible max. force, which thread?

- Service life calculation for 15 km: UGAQ = 13.2 N; THCA = 79.8 N; UGFC = 262.5 N (max. force 50N)
- Proposal: <u>LGA281S10-A-THCA-019</u> with 80 N

