
User Manual PNDS3

For Plug & Drive Studio 3 Version 1.6.0 User Manual Version: 1.2.0

Contents

1 Document aim and conventions.. 3

2 For your safety...5
2.1 Warn and risk levels...5

3 Before you start... 6
3.1 System and hardware requirements...6
3.2 Intended use and audience.. 6
3.3 Delivery scope and warranty.. 6

4 Your product.. 8

5 Installation and adapter...10

6 User interface (UI)..11
6.1 Header (1)...12
6.2 Project bar (4)...13
6.3 Work desk (3)... 17
6.4 Display wall (2)... 19

7 Project setup.. 21

8 Special controls... 24
8.1 Complex controls.. 24
8.2 Device communication..26

9 Oscilloscope... 27

10 Programming with NanoJ... 28
10.1 NanoJ program... 28
10.2 Mapping in the NanoJ program..31
10.3 NanoJ functions in the NanoJ program..33
10.4 Restrictions and possible problems..34

11 NanoJ App.. 35

12 Imprint, versions.. 36

1 Document aim and conventions

1 Document aim and conventions

Beside technical data, this document explains product use and function. For possible combination with other
Nanotec products, please ask your Nanotec sales partner. Before using the product, please note document
font styles and conventions.

Underlined text marks a cross reference or hyperlink.

Example 1: Observe our safety notes.

Example 2: Download needed code templates from our website for EMEA / APAC or AMERICA.

Gray bold italics call out menu paths, buttons, tab and file names.

Example 1: Select Home > Connect controller > CANopen.

Example 2: In the NanoJ tab, select NanoJ project and open Analog Input.cpp.

Plain italics mark Freehand entries and foreign-language expressions. They also emphasize words of critical
weight. Alternatively, bracketed exclaim marks(!) give critical weight.

Example 1: Enter Plug & Drive Studio. In addition to users (= Nutzer; usuario; utente; utilisateur; utente
etc.), this document also addresses:

- Third-party users (= Drittnutzer; tercero usuario; terceiro utente; tiers utilisateur; terzo utente etc.).

- End users (= Endnutzer; usuario final; utente final; utilisateur final; utente finale etc.).

Example 2: Protect yourself, others and your equipment. Follow our general safety notes that are gener-
ally applicable to all Nanotec products. Also follow the specific safety notes that apply to this specific
product.

Courier marks code blocks or programming commands.

Example 1: Via Bash, call sudo make install to copy shared objects; then call ldconfig.

Example 2: Use the following NanoLibAccessor function to change the logging level in NanoLib:

//
 ***** C++ variant *****
 void setLoggingLevel(LogLevel level);

The verb to co-click

Co-clicking means a mouse click by secondary key to open context menus etc.

Example 1: Co-click the file, select Rename, and rename the file.

Example 2: Co-click the file to check and select Properties.

Numerical values

Numbers appear in decimal. Hexadecimal notation ends in subscript h. Objects in the object dictionary notate in
hexadecimal as <Index>:<Subindex>, non-notated subindices as 00h. Example: 1003h:05h is subindex
5 in object 1003h. And 6040h is subindex 00 in object 6040h.

Bits

Each object bit counts up from LSB (bit number 0),
such as data type UNSIGNED8:

Version: 1.2.0 3

https://en.nanotec.com/downloads
https://us.nanotec.com/downloads

1 Document aim and conventions

Count direction (arrows)

Illustrations always count arrow-wards; both example
objects 60C5h and 60C6h are thus positive.

Max. acceleration (60C5h)

Max. deceleration (60C6h)

Ac
ce

le
ra

tio
n

t

Version: 1.2.0 4

2 For your safety

2 For your safety

Before product use, please ensure that all users read, understand and follow the instructions in this docu-
ment fully.

2.1 Warn and risk levels

Please note: our hazard warnings, alert symbols and signal words mark different risk levels.

CAUTION!

! CAUTION warns of possible physical danger! Minor / moderate injury possible!

►Instruction against unhealthy user errors.

►Alarm color #FFD100.

NOTICE

A NOTICE warns of wrong operation. Material / Ecological damage possible.

►Instruction against destructive user errors (= mere property risks).

►Alarm color #0070CD.

Note: Explains or simplifies a process by additional information.

Version: 1.2.0 5

3 Before you start

3 Before you start

Before product use, you need to prepare the PC and verify product intent / limits. Via online help, you can
learn how to install and set up projects and how PNDS3 runs. Observe the safety notes in the manual
(www.nanotec.com).

3.1 System and hardware requirements

Plug & Drive Studio 3 (PNDS3) needs 64-bit operating systems. Nanotec recommends controller firmware
FIR-v2213 or newer. PNDS3 offers a special control for firmware update.

PNDS3 64-bit OS requirements Fieldbus adapters / cables

v1.6.0 ■ Windows 10
■ .NET Framework 8
■ Display resolution 1920x1080

■ CANopen:

□ IXXAT USB-to-CAN V2
□ Nanotec ZK-USB-CAN-1

■ Modbus RTU:

□ Nanotec ZK-USB-RS485-1 or
equivalent USB-RS485 adapter

□ USB cable via virtual comport (VCP)

■ Ethernet (REST) , EtherCAT,
Profinet:

□ suitable ethernet cable
□ WinPcap 4.1.3, or Npcap

installation, see Installation and
adapter

3.2 Intended use and audience

NOTICE

Damage: from unskilled staff!

►Use the product only for the purpose described in this document.

►Restrict use to expert staff only.

►Follow valid OEM and system prescriptions for all equipment involved.

Plug & Drive Studio 3 (PNDS3) is a free software for easy Nanotec drive commissioning. The underlying
operating system / hardware (PC) is not real-time capable. Never use PNDS3 for time-critical or
synchronous multi-axis motion nor integrate it as a safety component in a product or system.

Add proper warnings and instructions for safe use / operation to each end user product with a Nanotec-
produced component. Submit any Nanotec warning directly to end users. The product addresses skilled
experts in industry use cases alone. Expert means:

■ Training / experience in motor and controller handling
■ Understanding this document plus Nanotec drive manuals

■ Knowledge of valid regulations

3.3 Delivery scope and warranty

PNDS3 comes as a *.zip folder from our download website for either EMEA / APAC or AMERICA. Duly store
and unzip your download before setup. The product package contains:

■ Software as an executable file ■ Current firmware release

Version: 1.2.0 6

https://en.nanotec.com/downloads/
https://us.nanotec.com/downloads/

3 Before you start

■ Project templates ■ Online help file

For scope of warranty, please observe our terms and conditions for either EMEA / APAC or AMERICA. Note:
Nanotec is not liable for wrong quality, handling, installation, operation, use, and maintenance of third-party
equipment! Follow valid OEM instructions.

Version: 1.2.0 7

https://en.nanotec.com/
https://us.nanotec.com/

4 Your product

4 Your product

With PNDS3, you parametrize and commission Nanotec drives. Using templates for various Nanotec drives,
you can add your own projects, systems and modules to the modular user interface. The software comes
with a default folder structure (Project, System, Module Group, Module, etc.).

Project

You manage all settings and device parameters in
projects, save these as a file and im- / export them,
say, as a template. Such a reusable Project can have
multiple systems, say, the axes of a machine.

System

In a project (here: external controller), you create
and store drive systems (here: X-axis). Each is im- /
exportable as template.

You can extend such a reusable System, of at least
motor and controller, by modules or module groups
for encoder, gearbox, brake, settings, parameters,
etc.

By parameters, sortable / poolable into several
modules or module groups, you quickly control all
system elements.

Module (Group)

A module (group) contains parameters or controls
(groups) and is im- / exportable, single or grouped, as
template.

Version: 1.2.0 8

4 Your product

Controls Group

A Controls group pools single device parameters
(objects from the dictionary in the controller) and / or
Special controls.

You im- / export such a control group together with
set values, say, as template.

Property editing

Simply co-click an element, select Properties, insert
a visible name, version number, and description: This
way you create your individual user interface.

Version: 1.2.0 9

5 Installation and adapter

5 Installation and adapter

Install the software, set up the adapter – and PNDS3 is ready to go. You find PNDS3 software online as a
zip download.

1. Open the website Nanotec > Products > Software > Plug & Drive Studio 3.
2. Download and extract the product zip file.
3. Run the executable file PNDS3.exe or use setup.exe resp. the installer to start the installer.
4. Only with PNDS3 installed: Prepare your fieldbus adapter (see below).

CANopen

1. Decide: Ixxat USB-to-CAN? Or Nanotec ZK-USB-CAN-1?
2. For Ixxat USB-to-CAN: Download the driver (www.ixxat.com/); install it by hand.
3. Connect the adapter to the computer. For Nanotec ZK-USB-CAN-1: Wait for self-installation.
4. Via correct cable (see product manual): Connect the installed adapter to the controller.

USB: Nanotec Virtual COM-Port (VCP)

1. Connect the voltage supply to the controller and switch it on.
2. Via correct USB cable: Connect the PC to the controller (= "mass storage device").
3. In Explorer > Controller directory: Select cfg.txt (= pd4ccfg.txtfor a PD4C).
4. Open the file via text editor (Notepad etc.).
5. Add the lines 2102|=0x100000 and 4015:01=0. Save the file.
6. Restart the controller and check if its COM port appears in the device manager.

Modbus RTU

1. For Nanotec ZK-USB-RS485-1: Connect the adapter to the computer and wait for self-installation.
2. For other equivalent adapters: Follow valid OEM instructions to install the driver.

EtherCAT

Install WinPcap 4.1.3 or Npcap and make sure the corresponding driver is activated for the designated
ethernet adapter.

Profinet

1. Install Win10cap or Npcap and make sure the corresponding driver is activated for the designated
ethernet adapter.

2. Configure the IP address of the drive and the ethernet adapter accordingly, as described in the drive
manual.

Ethernet (REST)

Configure the IP address of the drive and the ethernet adapter accordingly, as described in the drive manual.

Version: 1.2.0 10

https://www.ixxat.com/

6 User interface (UI)

6 User interface (UI)

Thanks to flexible areas and windows, fitted into the main window or usable stand-alone, you can master a
wide range of tasks. Before product use, please understand the UI structure.

When PNDS3 starts for the first time, you are asked
to create a new project: either a blank one or one
based on a template.

If you open a blank project, the project tree is empty
at first.

If you create a new project or load a template, the
interface fills up according to your needs. This way,
you design your own UI.

Using the View options in the main menu you can
further customize the UI by changing the theme,
showing/hiding features or opening them in separate
windows.

Version: 1.2.0 11

6 User interface (UI)

1

2

3

4

■ Header for main menu (1).
■ Display wall (2) for monitoring, object directory,

help etc.

■ Work desk (3) for user controls etc.
■ Project (or side) bar (4) for systems etc.

6.1 Header (1)

As a prominent layout bracket on top in the user interface, the UI header contains all basic functions and
commands relevant to projects, devices and the UI view.

File

Leftmost above the header, you find the main menu
for project files. You can load new – and save,
reopen, edit existing projects.

Device

Read, write, and save device parameters. Govern
NanoJ programs and fieldbus network (with
CANopen).

Set Parameters: Transmits the selected parameter
values to system-connected controllers.

Note: You can select parameters to be set by ticking
them.

Version: 1.2.0 12

6 User interface (UI)

Get Parameters: Reads the values of system-
connected controllers.

Store Parameters: Stores Set-transmitted values of
system-connected controllers.

Restore Factory Default: Restores all parameters
to their default values with the exception of the
parameters related to tuning (motor/sensor specific)
and fieldbusses. For further details refer to your
controller manual.

Restart Device: Restarts the system-connected
controller.

View

Here you can customize the UI by changing the
theme, showing/hiding features or opening them in
separate windows.

You can also set the User level, to govern user rights
for the following roles:

■ Expert: Project owner with all rights. May create
and edit projects, rights, visibilities, etc. Governs
via Properties, for each single parameter up to a
complete Controls group, who may see and edit
exactly what.

■ Intermediate: May change device parameters, but
can't edit a project.

■ Basic: Similar to Intermediate, but often gets
fewer editing rights from Expert.

Help

Open the online help or PNDS3 version info.

6.2 Project bar (4)

This side bar diplays your loaded project as a tree list by which you create the user interface. Note: De-
pending on assembly, you can check connections and attributes of all tree list items in the work desk (3).

Tree list

You find the project bar in the very left of the user
screen.

Version: 1.2.0 13

6 User interface (UI)

A project (here: for an external controller) tree-lists
all systems and the items therein (see also Project
setup). One project and one system are minimum;
further items are optional and later on define the
entire UI layout.

System 1 contains the module groups Quick Start
with modules for the basic settings and Application
Settings with further controls and parameter groups.

For each module, you may add one or more controls
groups to the work desk (3) further to the right.

Project > System

A system represents a motor with controller, that is,
one per motor in a multi-axis application.

1. To set up a system: Co-click the project.
2. In the context menu: Either create a new system

via Add New System.
3. Or fetch an existing one via Import System.

Version: 1.2.0 14

6 User interface (UI)

4. A new node (= blue) appears in the tree list.
5. To name it: Co-click the node, select Properties.

Note: You can edit any object via Properties.

6. In the pop-up: Name the system as needed.
7. If needed: Versionize and describe the system.

You can add a string for the device name and
firmware version, which should be checked after
connecting to a device.

8. After last entry: Set a tab stop (so that all is
stored).

9. Only then: Close the pop-up.
10.Assemble the system with module groups (see

below).

Project > System > Module group

A module group bundles several motor functions (=
modules). Depending on assembly, you can check its
connections and attributes in the work desk (3).

1. To set up a module group: Co-click the system.
2. In the context menu: Either create a new module

group via Add module group.
3. Or fetch an existing one via Import module group.

4. A new node appears in the tree list.
5. To name it: Co-click the node, select Properties.

Note: You can edit any object via Properties.

Version: 1.2.0 15

6 User interface (UI)

6. In the pop-up: Name the module group as needed
(here: Controller template).

7. If needed: Versionize and describe the module
group.

8. After last entry: Set a tab stop (so that all is
stored).

9. Only then: Close the pop-up.
10.Assemble the module group with modules (see

below).

Project > System > Module group > Module

A module allows you to add a single motor function (=
parameter set etc.). Depending on assembly, you can
check its connections and attributes in the work desk
(3).

1. To set up a module: Co-click the module group
(here: Controller template).

2. In the context menu: Either create a new module
via Add Module.

3. Or fetch an existing one via Import Module.

4. A new node appears in the tree list.
5. To name it: Co-click the node, select Properties.

Note: You can edit any object via Properties.

6. In the pop-up: Name the module as needed (here:
Communication settings).

7. If needed: Versionize and describe the module,
add it to a Monitor

8. After last entry: Set a tab stop (so that all is
stored).

9. Only then: Close the pop-up.

Version: 1.2.0 16

6 User interface (UI)

Project > System > Module group > Module > Controls group

A controls group bundles individual operating
elements or parameter sets.

1. To set up a controls group: Co-click the module.
2. In the context menu: Either create a new controls

group via Add Controls Group.
3. Or fetch an existing one via Import Group.

4. In any case, the controls group appears in the
work desk (3).

5. Right there: Co-click the group and its Properties.
Note: You can edit any object via Properties.

6. In the pop-up: Name the controls group as
needed.

7. If needed: Versionize and describe the group.
Note the pull-downs for granted viewing and
editing rights (here: both Basic).

8. After last entry: Set a tab stop (so that all is
stored).

9. Only then: Close the pop-up.

6.3 Work desk (3)

At the work desk, in the user screen's half-left, you edit the properties / contents / controls of your project and
systems. Depending on assembly, different tabs are above the worktable:

An Attributes area accompanies all items (also module groups); Bus settings, by contrast, only the project
itself. The Connection settings tab, finally, is for systems only; and Configuration is only for modules. Each
tab opens different aspects:

Controls groups Operator clusters

Parameters Operator values

Special controls Feature operators

Complex controls Multi-level operators

Controls group > Parameter

1. To add a parameter: Co-click the controls group
and click Add Parameter.

Version: 1.2.0 17

6 User interface (UI)

2. In the pop-up: Enter device or 0x4041 to filter for
the Device Id object.

3. You may expand objects by mouse (or tick at
Expand all).

4. Click Device Id and Next (if wrong: step Back).

5. In the next pop-up: Select the visual reprentation
and click Finish.

Controls group > Special controls

1. Co-klick a controls goup to open its context menu.
2. Select Add Special Controls to open the Complex

controls list.

3. In the pop-up: Select the needed item.
4. To confirm: Click Add.

Version: 1.2.0 18

6 User interface (UI)

6.4 Display wall (2)

The display wall contains the monitors, error list, current OD values, help and console.

Several tabs facilitate navigation in the display wall, in
the user screen's upper right.

In the Monitoring tab, you combine either single or
grouped monitors to track individual system behavior
in real time.

1. To set up a monitor: Co-click the tab Monitoring.
2. In the context menu: Either create a new monitor

via Add Monitor Module.
3. Or fetch an existent one via Import Module.

The bottom part of the monitor display contains
always the system monitor which shows the current
device and connection status information.

Version: 1.2.0 19

6 User interface (UI)

OD Monitor: Lists all objects from the controller's
dictionary, together with their current values. For
updates: Click Read.

To save the list as a text file on the hard drive: Click
Dump. Keep the text file with current values ready in
case of support enquiries.

Help: Displays the description of the currently chosen
element (OD object).

Console: Use this to quickly read/write.from/to the
device's object dictionary.

Type <od index>:<od subindex> for read.

Type <od index>:<od subindex>=<value> for write.

Error List: Here you can read the actual errors.

Version: 1.2.0 20

7 Project setup

7 Project setup

In a project, you manage your devices, settings, connections, etc. Note: Ex works, in the software's
templates folder, there is a sample project each for an external andan integrated controller. Nanotec
recommends using these templates.

Load / Create a project

1. In the user screen: Visit the file menu (1)

2. Preferably use Project > Open to select an
existent sample project for template.

3. Or, for a new one instead: Select Project > New.

4. If a pop-up wants to store the current project: Click
Yes.

■ No will close the project unstored and without
backup.

■ Cancel will just close the pop-up.
5. The newly loaded selection appears in the project

bar (4)

If needed: Name the project

1. Go to the Project bar (4).
2. Co-click the current project and Properties.

Version: 1.2.0 21

7 Project setup

3. In the pop-up: Name, versionize, and describe the
project. Note the pull-down for granted user rights
(here: Expert).

4. After last entry: Set a tab stop (so that all is
stored).

5. Only then: Close the pop-up.

Load / Create a system

1. In the project: Preferably use Import System to
select an existent sample system for template.

2. Or, for a new one instead: Select Add new
system.

3. In the pop-up: Name, versionize, describe the
system as needed.

4. After last entry: Set a tab stop (so that all is
stored).

5. Only then: Close the pop-up.
6. Repeat for each additional system.

Connect to adapter

1. In the project bar (4): Select your project.

2. In the work desk (3): Open the Bus settings tab.
3. In the Bus settings tab: Select the Bus type.
4. Check setup by Scan adapters. If no result: Set up

an adapter and check again.
5. Select the needed adapter.

Version: 1.2.0 22

7 Project setup

Connect to device

1. In the Bus settings tab: With the adapter linked,
you can see all available devices.

2. Click Scan devices. Check Connected device.
3. By Pulldown: Select a system to link your device

to.

4. You can link / unlink the device via Connect icon
(here: green).

Select the OD file

PNDS3 shows objects that match the controller firmware with correct OD file only (object dictionary). If
the system is linked, a Object Dictionary Entries tab shows if the correct OD file is loaded. Otherwise, the
generic file Common OD loads, by which you reach available objects of all Nanotec products.

1. Select the system.
2. Open the Object Dictionary Entries tab.

■ Common OD: Reloadable via Remove OD File
■ OD file of choice: Loadable via Change OD File
■ Firmware-correct OD files for all Nanotec control-

lers: In PNDS3's Firmware folder

Wrong OD files report an error (= red).

Version: 1.2.0 23

8 Special controls

8 Special controls

Via Special controls, you add Complex controls and Device communication settings to the user interface.
Both help you to use advanced controller functions.

Basic principle

Special controls define and monitor (as macro
collections) the system behavior. Depending on
assembly, you can check their connections and
attributes in the work desk.

1. To set up complex controls or device
communication: Co-click the controls group.

2. In the context menu: Select Add Special Controls.

3. Complex controls? Device communication
settings? Open the tab of choice.

4. Select the needed item and Add.

→ The control / setting of choice appears in the work
desk.

8.1 Complex controls

With the Complex controls macro collection, you create your own controller functions. Next to Autosetup
and Firmware update, these include Jog Console, Motion Test, NanoJ Control and Memo Text.

Autosetup

Autosetup detects the motor type and connected sensors (encoder / Hall sensors).

Version: 1.2.0 24

8 Special controls

CAUTION!

!
Injury: from abrupt motor travel after auto-setup (= parameter loss)!

►For motors with integrated controllers: Avert auto-setup (since it comes factory-run already).

►Otherwise: Restart the motor after auto-setup (homing alone won't suffice).

►Stay clear of moving motor parts.

►Touch the motor at standstill only.

NOTICE

Motor malfunction: from auto-setup user error!

►Close possible NanoJ programs (object 2300h:00h Bit 0 = "0"; cf. 2300h NanoJ Control).

►Keep the motor load-free, and freely rotable in any direction.

►Don't touch the motor.

As long as the motor on the controller or the feed-
back sensors (encoder / Hall) remain the same: Run
Autosetup only once, on initial commissioning.

Firmware update

Nanotec recommends controller firmware FIR-v2213 or newer. Please find the current version in the Firm-
ware folder on the PNDS3-website.

1. Open or add theFirmware update control.
2. Click Load from file.
3. Select a firmware file and click Open.
4. PNDS3 checks via product code if the chosen file

fits to the product.
5. Click Update device.
6. Firmware updates itself.

Note: The chosen firmware file will be stored as part
of the project the next time the latter is stored. If you
don't want this to happen, click Remove from project
before.

Jog Console

Via Jog Console, you test the motor in velocity mode.
You can select two target speeds. The motor runs
as long as you use the mouse to press the button for
left / right rotation.

Motion Test

In Motion Test, you test the motor in position / ve-
locity / torque mode. Your options include target val-
ues, acceleration / deceleration ramps, repetition cy-
cles, test run duration etc.

Version: 1.2.0 25

8 Special controls

NanoJ Control

In NanoJ control, you create a NanoJ new project
(= New) or Import an existing one (code examples
available in the Knowledge Base at nanotec.com).
The button Build compiles the project.

The Settings and Configuration sections are
reserved for the NanoJ App.

Note: The next time you store the project, the select-
ed NanoJ file merges into the project. If you don't
wish this to happen, click Remove before.

You can find further details in the chapter Programming with NanoJ.

Memo Text

Adds a freely editable text box.

8.2 Device communication

With these controls, you parametrize the device communication. Note: Coding switches for setting the com-
munication parameters overwrite the software settings on some devices. For details: Follow valid OEM in-
structions.

Version: 1.2.0 26

9 Oscilloscope

9 Oscilloscope

Via Oscilloscope, you monitor and control in real time the current value of device parameters from the object
dictionary, say, for recording.

To open the oscillosope, go to the Main Menu >
Windows and select it.

Under Settings you can configure the following:

■ Realtime: If chosen, the oscilloscope starts
imeediately and runs continuously, until the buffer
is full. If not selected you can further define the
conditions for start/stop.

■ Start: Immediate, Condition (as soon as a param-
eter of choice changes), or Motion test (Motion
test triggers the scope).

■ Stop: Duration (of recording) or Manual.

In the right bottom corner you can add channels by
selecting from the object dictionary or remove them.

For recording, you open a new (or import an existing)
oscilloscope in the tab above the settings and click
Start.

Version: 1.2.0 27

10 Programming with NanoJ

10 Programming with NanoJ

NanoJ is a programming language similar to C or C++.

10.1 NanoJ program

A NanoJ program makes a protected runtime environment available within the firmware. Here, the user
can create his own processes. These can then trigger functions in the controller by, for example, reading or
writing entries in the object dictionary.

Through the use of protective mechanisms, a NanoJ program is prevented from crashing the firmware. In the
worst case, the execution is interrupted with an error code stored in the object dictionary.

If the NanoJ program was loaded on the controller, it is automatically executed after the controller is switched
on or restarted, as long as you do not set bit 0 in object 2300h to "0".

10.1.1 Available computing time

A NanoJ program receives computing time cyclically in a 1 ms clock (see following figure). Because
computing time is lost through interrupts and system functions of the firmware, only a portion of the
computing time is available to the user program (depending on control mode and application). In this time,
the user program must run through the cycle and either complete the cycle or yield the computing time by
calling the yield() function. In the former case, the user program is restarted with the start of the next 1 ms
cycle; the latter results in the program being continued on the next 1 ms cycle with the command that follows
the yield() function.

...

1 2 30 t in ms

NanoJ

Idle

Operating
system

Read inputs

Write outputs

If the NanoJ program needs more time than was allotted, it is ended and an error code set in the object
dictionary.

TIP

When developing user programs, the runtime behavior must be carefully examined, especially for
more time-intensive tasks. For example, it is therefore recommended that tables be used instead of
calculating a sine value using a sin function.

Version: 1.2.0 28

10 Programming with NanoJ

NOTICE

If the NanoJ program does not yield the computing time after too long a time, it is ended by the
operating system. In this case, the number 4 is entered in the statusword for object 2301h; in the
error register for object 2302h, the number 5 (timeout) is noted, see OD_2301_00 NanoJ Status and
OD_2302_00 NanoJ Error Code.

To keep the NanoJ program from stopping, you can activate AutoYield mode by writing value "5" in
2300h. In AutoYield mode, however, the NanoJ program is no longer real-time capable and no longer
runs every 1 ms.

10.1.2 Protected runtime environment
Using process-specific properties, a so-called protected runtime environment is generated. A user program
in the protected runtime environment is only able to access specially allocated memory areas and system
resources. For example, an attempt to directly write to a processor IO register is acknowledged with an MPU
Fault and the user program terminated with the corresponding error code in the object dictionary.

10.1.3 NanoJ program – communication possibilities

A NanoJ program has a number of possibilities for communicating with the controller:

■ Read and write OD values using PDO mapping
■ Directly read and write OD values via NanoJ functions
■ Call other NanoJ functions (e.g., write debug output)

The OD values of the user program are made available in the form of variables via PDO mapping. Before
a user program receives the 1 ms time slot, the firmware transfers the values from the object dictionary to
the variables of the user program. As soon as the user program receives computing time, it can manipulate
these variables as regular C variables. At the end of the time slot, the new values are then automatically
copied by the firmware back to the respective OD entries.

To optimize the performance, three types of mapping are defined: input, output, and input/output (In, Out,
InOut).

■ Input mappings can only be read; they are not transferred back to the object dictionary.
■ Output mappings can only be written.
■ Input/output mappings, on the other hand, can both be read and written.

The set mappings can be read and checked via the GUI for objects 2310h, 2320h, and 2330h. Up to 16
entries are allowed for each mapping.

Whether a variable is stored in the input, output or data range is controlled in Plug & Drive Studio via the
specification of the linker section.

NanoJ inputs and NanoJ outputs

To communicate with the NanoJ program via the respective interface, you can use the following objects:

■ OD_2400_00 NanoJ Inputs: Array with thirty-two S32 values for passing values to the NanoJ program
■ OD_2410_00 NanoJ Init Parameters: Array with thirty-two S32 values. This object can be stored, unlike

2400h.
■ OD_2500_00 NanoJ Outputs: Array with thirty-two S32 values, where the NanoJ program can store values

that can be read out via the fieldbus

10.1.4 Executing a NanoJ program

When executing a cycle, the NanoJ program essentially consists of the following three steps with respect to
the PDO mapping:

1. Read values from the object dictionary and copy them to the input and output areas
2. Execute a user program
3. Copy values from the output and input areas back to the object dictionary

Version: 1.2.0 29

10 Programming with NanoJ

The configuration of the copy processes is based on the CANopen standard.

In addition, values of the object dictionary can be accessed via NanoJ functions. This is generally slower;
mappings are therefore to be preferred. The number of mappings is limited (16 entries each in In/Out/InOut).

TIP

Nanotec recommends: Map OD entries that are used and changed frequently and use NanoJ function
to access OD entries that are used less frequently.

A list of available NanoJ functions can be found in chapter NanoJ functions in the NanoJ program.

TIP

Nanotec recommends accessing a given OD value either by mapping or using a NanoJ function with
od_write(). If both are used simultaneously, the NanoJ function has no effect.

10.1.5 Structure of a NanoJ program

A user program consists of at least two instructions:

■ the preprocessor instruction #include "wrapper.h"
■ the void user(){} function

The code to be executed can be stored in the void user() function.

NOTICE

The file names of the user programs must not be longer than eight characters plus three characters
in the suffix; file name main.cpp is permissible, file name aLongFileName.cpp is not permissible.

NOTICE

In NanoJ programs, global variables may only be initialized within functions. It then follows:

■ No new operator
■ No constructors
■ No initialization of global variables outside of functions

Examples:

The global variable is to be initialized within the void user() function:

unsigned int i;
void user(){
 i = 1;
 i += 1;
}

The following assignment results in an error during compilation:

unsigned int i = 1;
 void user() {
 i += 1;
}

Version: 1.2.0 30

10 Programming with NanoJ

10.1.6 NanoJ program example

The example shows the programming of a square wave signal in object 2500h:01h.

// file main.cpp
map S32 outputReg1 as inout 0x2500:1
#include "wrapper.h"

// user program
void user()
{
 U16 counter = 0;
 while(1)
 {
 ++counter;

 if(counter < 100)
 InOut.outputReg1 = 0;
 else if(counter < 200)
 InOut.outputReg1 = 1;
 else
 counter = 0;

 // yield() 5 times (delay 5ms)
 for(U08 i = 0; i < 5; ++i)
 yield();
 }
}// eof

You can find other examples at us.nanotec.com.

10.2 Mapping in the NanoJ program

With this method, a variable in the NanoJ program is linked directly with an entry in the object dictionary.
The creation of the mapping must be located at the start of the file here, even before the #include
"wrapper.h" instruction.

TIP

Nanotec recommends:

■ Use mapping if you need to access an object in the object dictionary frequently, e. g., controlword
6040h or statusword 6041h.

■ The od_write() and od_read() functions are better suited for accessing objects a single time,
see Accessing the object dictionary.

10.2.1 Declaration of the mapping

The declaration of the mapping is structured as follows:

map <TYPE> <NAME> as <input|output|inout> <INDEX>:<SUBINDEX>

Where:

■ <TYPE>

The data type of the variable; U32, U16, U08, S32, S16 or S08.
■ <NAME>

The name of the variable as it is used in the user program.
■ <input|output|inout>

Version: 1.2.0 31

http://www.nanotec.de

10 Programming with NanoJ

The read and write permission of a variable: a variable can be declared as an input, output or
inout. This defines whether a variable is readable (input), writable (output) or both (inout) and the
structure by means of which it must be addressed in the program.

■ <INDEX>:<SUBINDEX>

Index and subindex of the object to be mapped in the object dictionary.

Each declared variable is addressed in the user program via one of the three structures: In, Out or InOut
depending on the defined write and read direction.

NOTICE

A comment is only permitted above the respective mapping declaration in the code, not on the same
line.

10.2.2 Example of mapping

Example of a mapping and the corresponding variable accesses:

// 6040h:00h is UNSIGNED16
map U16 controlWord as output 0x6040:00
// 6041h:00h is UNSIGNED16
map U16 statusWord as input 0x6041:00

// 6060h:00h is SIGNED08 (INTEGER8)
map S08 modeOfOperation as inout 0x6060:00

#include "wrapper.h"

void user()
{
 [...]
 Out.controlWord = 1;
 U16 tmpVar = In.statusword;
 InOut.modeOfOperation = tmpVar;
 [...]
}

10.2.3 Possible error at od_write()

A possible source of errors is a write access with the od_write() function (see NanoJ functions in the
NanoJ program) of an object in the object dictionary that was simultaneously created as mapping. The code
listed in the following is incorrect:

map U16 controlWord as output 0x6040:00
#include " wrapper.h"
void user()
{
 [...]
 Out.controlWord = 1;
 [...]
 od_write(0x6040, 0x00, 5); // der Wert wird durch das Mapping überschrieben
 [...]
}

The line with the od_write(0x6040, 0x00, 5); command has no effect. As described in the
introduction, all mappings are copied to the object dictionary at the end of each millisecond.

This results in the following sequence:

1. The od_write function writes the value 5 in object 6040h:00h.

Version: 1.2.0 32

10 Programming with NanoJ

2. At the end of the 1 ms cycle, the mapping is written that also specifies object 6040h:00h, however, with
the value 1.

3. From the perspective of the user, the od_write command thus serves no purpose.

10.3 NanoJ functions in the NanoJ program

With NanoJ functions, it is possible to call up functions integrated in the firmware directly from a user
program. Code can only be directly executed in the protected area of the protected execution environment
and is realized via so-called Cortex Supervisor Calls (Svc Calls). Here, an interrupt is triggered when the
function is called, thereby giving the firmware the possibility to temporarily permit code execution outside
of the protected execution environment. Developers of user programs do not need to worry about this
mechanism – for them, the NanoJ functions can be called up like normal C functions. Only the wrapper.h file
needs to be integrated as usual.

10.3.1 Accessing the object dictionary

void od_write (U32 index, U32 subindex, U32 value)

This function writes the transferred value to the specified location in the object dictionary.

index Index of the object to be written in the object dictionary

subindex Subindex of the object to be written in the object dictionary

value Value to be written

NOTICE

It is highly recommended that the processor time be passed on with yield() after calling a
od_write(). The value is immediately written to the OD. For the firmware to be able to trigger actions
that are dependent on this, however, it must receive computing time. This, in turn, means that the
user program must either be ended or interrupted with yield().

U32 od_read (U32 index, U32 subindex)

This function reads the value at the specified location in the object dictionary and returns it.

index Index of the object to be read in the object dictionary

subindex Subindex of the object to be read in the object dictionary

Output value Content of the OD entry

NOTICE

Active waiting for a value in the object dictionary should always be associated with a yield().

Example

while (od_read(2400,2) != 0) // wait until 2400:2 is set
{ yield(); }

10.3.2 Process control

void yield()

Version: 1.2.0 33

10 Programming with NanoJ

This function returns the processor time to the operating system. In the next time slot, the program continues
at the location after the call.

void sleep (U32 ms)

This function returns the processor time to the operating system for the specified number of milliseconds.
The user program is then continued at the location after the call.

ms Time to be waited in milliseconds

10.4 Restrictions and possible problems

Restrictions and possible problems when working with NanoJ are listed below:

Restriction/problem Measure

If an object is mapped, e. g., 0x6040, the object is
reset to its previous value every 1 ms. This makes
it impossible to control this object via the fieldbus
or the Plug & Drive Studio.

Instead use od_read / od_write to access the
object.

If an object was mapped as output and the value
of the object was never defined before starting the
NanoJ program, the value of this object may be
random.

Initialize the values of the mapped objects in
your NanoJ program to ensure that it behaves
deterministically.

The array initialization must not be used with more
than 16 entries.

Use constant array instead.

Too many local variables and arrays within
functions may result in a stack overflow.

Declare the variables globally. Memory
requirements are monitored already during
compilation; errors do not occur at runtime.

Functions that are too deeply nested may result in
a stack overflow.

Observe a maximum nesting depth of 2.

float must not be used with comparison
operators.

Use int instead.

double must not be used.

If a NanoJ program restarts the controller (either
directly with an explicit restart or indirectly,
e. g., through the use of the Reset function), the
controller may fall into a restart loop that can be
exited only with difficulty if at all.

math or cmath cannot be included.

Version: 1.2.0 34

11 NanoJ App

11 NanoJ App

With the NanoJ App you can quickly have a NanoJ program created for controlling via digital/analog inputs
for standalone operation.

You find the module NanoJ App in every Project template (with the exception of CSL3, because this product
does nto support NanoJ). With the supplied default Settings and the Configuration you assign to an input
combination.

1. Under INPUT SELECT choose a function for each
of your product's digital inputs: Start/Stop a motion
profile, use the input as switch or release/enable
or for profile selection (bitwise with one or more
inputs, depending on the number of profiles).

2. Under PROFILE SELECT define the operation
mode for each motion profile.

3. In the following configuration tabs enter the
settings (speed, target etc.) for the specific
operation mode (homing, position, velocity).

4. Save and click Generate App.

Version: 1.2.0 35

12 Imprint, versions

12 Imprint, versions

© 2024 Nanotec Electronic GmbH & Co. KG. All rights reserved. No portion of this document to be repro-
duced without prior written consent. Specifications subject to change without notice. Errors, omissions, and
modifications excepted. Original version.

Nanotec Electronic GmbH & Co. KG │ Kapellenstraße 6 │ 85622 Feldkirchen │ Germany

Tel. +49 (0)89 900 686-0 │ Fax +49 (0)89 900 686-50 │ info@nanotec.de │ www.nanotec.com

Document Changes PNDS3

1.0.0 (06/2022) Edition V1.3.0

1.0.1 (11/2022) New software version V1.4.0, new firmware FIR-v2213 V1.4.0

1.1.0 (11/2023) New software version V1.5.2 V1.5.2

1.1.1 (12/2023) Minor corrections V1.5.3

1.2.0 (04/2024) New software version V1.6.0 including installer.

■ New software version V1.6.0. requires .NET 8 Runtime.
■ New chapters Programming with NanoJ and NanoJ App.

V1.6.0

Version: 1.2.0 36

	Contents
	1 Document aim and conventions
	2 For your safety
	2.1 Warn and risk levels

	3 Before you start
	3.1 System and hardware requirements
	3.2 Intended use and audience
	3.3 Delivery scope and warranty

	4 Your product
	5 Installation and adapter
	6 User interface (UI)
	6.1 Header (1)
	6.2 Project bar (4)
	6.3 Work desk (3)
	6.4 Display wall (2)

	7 Project setup
	8 Special controls
	8.1 Complex controls
	8.2 Device communication

	9 Oscilloscope
	10 Programming with NanoJ
	10.1 NanoJ program
	10.1.1 Available computing time
	10.1.2 Protected runtime environment
	10.1.3 NanoJ program – communication possibilities
	10.1.4 Executing a NanoJ program
	10.1.5 Structure of a NanoJ program
	10.1.6 NanoJ program example

	10.2 Mapping in the NanoJ program
	10.2.1 Declaration of the mapping
	10.2.2 Example of mapping
	10.2.3 Possible error at od_write()

	10.3 NanoJ functions in the NanoJ program
	10.3.1 Accessing the object dictionary
	10.3.2 Process control

	10.4 Restrictions and possible problems

	11 NanoJ App
	12 Imprint, versions

