Motor Controller Basics

Machine Model

Sensors for position and velocity feedback can be placed everywhere.

Motor Model

Motor Model

stator windings generate a variable magnetic field rotor permanent magnet following the field

Open Loop

- Full current all the time
- The magnetic field of the stator is rotating
- There is confidence that the rotor follows
- No sensor is involved cheap
- The rotor position is not known

Open Loop

- Full current all the time
- The magnetic field of the stator is rotating
- It is assumed that the rotor follows
- No sensor is involved cheap
- The rotor position is not known

If the magnetic field rotation is too quick, the rotor will not follow.

Closed Loop

no torque at 0° no rotor movement

Closed Loop

no torque at 180° – but instable rotor will flip eventually

no torque at 0° no rotor movement

Closed Loop

no torque at 180° – but instable rotor will flip eventually

Nanotec[®]

max torque at 90°

no torque at 0° no rotor movement

Closed Loop – Energy-Efficient Movement

- Current creates acceleration
- No current, no acceleration
- When the rotor has stopped the current is 0
- The magnetic field of the stator is always at an angle of 90° to the rotor
- Rotor position must be known
- Sensor is needed for positioning, otherwise sensorless control can be used

Closed Loop – Energy-Efficient Movement

- Current creates acceleration
- No current, no acceleration
- When the rotor has stopped the current is 0
- The magnetic field of the stator is always at an angle of 90° to the rotor
- Rotor position must be known
- Sensor is needed for positioning, otherwise sensorless control can be used

Control Loops – Proportional-Integral Controller

Simplified drawing of the velocity PI controller

- w demand velocity
- x actual velocity
- e velocity error
- y torque demand adjustment
- ff torque feed-forward
- w torque demand

Control Loops – The Controller Cascade

There are PI controllers for

- position
- velocity
- torque

Trajectory – Trapezoid

Trajectory – Trapezoid

Trajectory – Jerk Limited

Trajectory – Jerk Limited

Trajectory – Feeding the Controller Cascade

Modes of Operation

- Switching modes is always possible, even when driving!
- Modes with internal trajectory
 - Profile position
 - Profile velocity
 - Profile torque
- Modes with external trajectory calculation from a master, giving new values each millisecond
 - Cyclic synchronous position
 - Cyclic synchronous velocity
 - Cyclic synchronous torque
- Homing
 - To search for a reference position, usually with a connected switch
- Clock Direction
- Analog Mode

CANopen – Up to Firmware FIR-v16..

Older firmware versions implement only a subset of the functions and parameters defined in the CiA 402 specifications.

CANopen– From Firmware FIR-v18..

Newer firmware versions on the other hand implement most of them, offering better exchangeability with devices compliant to CiA 402.

CANopen – Object Dictionary

- Index_h:Subindex_h = value
- Usual objects
 - Target velocity of 200 U/min $60FF_h:00_h = 200$
 - Mode of operation profile velocity $6060_h:00_h = 3$
- Arrays and records
 - Profile jerk
 - Number of subindices
 - Four jerk parameters in U/min/s²

 $60A4_{h}:00_{h} \rightarrow 4$ $60A4_{h}:01_{h} = 3000$ $60A4_{h}:02_{h} = 1000$ $60A4_{h}:03_{h} = 1000$ $60A4_{h}:04_{h} = 1000$

CANopen Protocols

SDO – Service Data Object

- Read and write access to an object via Index_h:Subindex_h
- One access per millisecond
- Transfer of Index, subindex and content

PDO – Process Data Object

- Cyclic read and write access to multiple but pre-configured objects
- Only transfer of contents
- Configuration per SDO
- LSS Layer Setting Services (CAN only)
- Node ID
- Baud rate

