

Technisches Handbuch

Controller für Schritt- und BLDC-Motoren SMCI35

NANOTEC ELECTRONIC GmbH & Co. KG Gewerbestraße 11 D-85652 Landsham bei München Tel. +49 (0)89-900 686-0 Fax +49 (0)89-900 686-50 info@nanotec.de

Impressum

© 2010 Nanotec[®] Electronic GmbH & Co. KG Gewerbestraße 11 D-85652 Landsham / Pliening

Tel.: +49 (0)89-900 686-0 Fax: +49 (0)89-900 686-50

Internet: www.nanotec.de

Alle Rechte vorbehalten!

MS-Windows 2000/XP/Vista sind eingetragene Warenzeichen der Microsoft Corporation.

Version/Änderungsübersicht

Version	Datum	Änderungen
1.0	25.01.2010	Neuanlage C+P
1.1	05.03.2010	Neues Bild auf Titelseite
1.2	22.03.2010	Diverse Änderungen
1.3	03.11.2010	BLDC-Verwendung

Zu diesem Handbuch

Zielgruppe

Dieses Technische Handbuch richtet sich an Konstrukteure und Entwickler, die ohne größere Erfahrung in der Schrittmotortechnologie einen Nanotec[®] Motor in Betrieb nehmen müssen.

Wichtige Hinweise

<u>Vor der Installation und Inbetriebnahme</u> des Controllers ist dieses Technische Handbuch sorgfältig durchzulesen.

Nanotec[®] behält sich im Interesse seiner Kunden das Recht vor, technische Änderungen und Weiterentwicklungen von Hard- und Software zur Verbesserung der Funktionalität dieses Produktes ohne besondere Ankündigung vorzunehmen.

Dieses Handbuch wurde mit der gebotenen Sorgfalt zusammengestellt. Es dient ausschließlich der technischen Beschreibung des Produktes und der Anleitung zur Inbetriebnahme. Die Gewährleistung erstreckt sich gemäß unseren allgemeinen Geschäftsbedingungen ausschließlich auf Reparatur oder Umtausch defekter Geräte, eine Haftung für Folgeschäden und Folgefehler ist ausgeschlossen. Bei der Installation des Gerätes sind die gültigen Normen und Vorschriften zu beachten.

Für Kritik, Anregungen und Verbesserungsvorschläge wenden Sie sich bitte an die oben angegebene Adresse oder per Email an: info@nanotec.de

Weitere Handbücher

Bitte beachten Sie auch folgende Handbücher von Nanotec:

NanoPro Benutzerhandbuch	Konfiguration von Steuerungen mit der Software NanoPro	<section-header></section-header>
Programmierhandbuch	Programmierung von SteuerungenBefehlsreferenzNanoJCOM-Schnittstelle	Nanctec Secondary Annual Secondary Secondary Secondary Secondary Secondary Secondary Secondary Secondary Secondary Secondary Secondary Secondary Secondary Secondary Secondary Secondary

Die Handbücher stehen auf www.nanotec.de zum Download zur Verfügung.

Inhalt

1	Übersicht5
2	Anschließen und Inbetriebnahme7
2.1	Übersicht7
2.2	Schrittmotor
2.3	BLDC-Motor
2.4	Inbetriebnahme
3	Anschlüsse und Beschaltung12
3.1	Ein- und Ausgänge: Stecker X4 und X5 12
3.2	Anschluss Encoder: Stecker X2 14
3.3	Anschluss Motor und Spannungsversorgung: Stecker X3 16
3.3.1	Pinbelegung
3.3.2	Anschluss Schrittmotor 16
3.3.3	Anschluss BLDC-Motor
3.3.4	Anschluss Spannungsversorgung 17
3.4	Motorstrom einstellen
3.5	Schnittstelle RS232: Stecker X1
4	Operationsmodi
5	Fehlersuche und -behebung22
6	Technische Daten
Index	

1 Übersicht

Einleitung

Der Motorcontroller SMCI35 ist eine äußerst kompakte und kostengünstige Konstantstrom-Leistungsendstufe mit einer integrierten Closed-Loop Stromregelung.

Aufgrund der großen Leistungsfähigkeit und Funktionsvielfalt bietet er Konstrukteuren und Entwicklern eine schnelle und einfache Möglichkeit, vielfältige Antriebsanforderungen mit geringem Programmieraufwand zielgerichtet zu lösen.

Er wird zur Steuerung von Standard-Schrittmotoren (auch mit angebautem Encoder) oder Motoren mit integriertem Encoder eingesetzt. BLDC-Motoren werden ebenfalls unterstützt.

Der SMCI35 ist aufgrund seiner offenen, kostengünstigen Bauform und der TTL-Signalpegel (5 V) für den Gerätebau optimiert. Für den Maschinenbau empfehlen wir die geschlossenen Steuerungen SMCI33 und SMCI47-S-2, die u.a. auch 24 V-Signale verarbeiten können und auf der gleichen Softwarebasis aufgebaut sind.

Funktionen des SMCI35

Der Controller SMCI35 enthält folgende Funktionen:

- 12-48 V Versorgungsspannung, max. 6 A eff. Phasenstrom
- Mikroschritt-1/1 1/64 Leistungsendstufe (Schrittauflösung von bis zu 0,014° bei Motoren mit einem Schrittwinkel von 0,9° im 64tel-Schrittmodus)
- Closed-Loop Stromregelung (Sinuskommutierung über den Encoder)
- Sinuskommutierung für BLDC-Motoren mit Hallsensoren für bessere Laufruhe und höheren Drehzahlbereich
- Mikroschritt-Emulation im Vollschritt-Betrieb zur besseren Laufruhe
- Leistungsfähiger DSP Mikroprozessor f
 ür flexible I/O
- Ablaufprogramme mit NanoJ
- Leichte Programmierung mit der Windows-Software NanoPro

ClosedLoop

Closed-Loop Stromregelung (Sinuskommutierung über den Encoder):

Anstatt wie bei herkömmlichen Steuerungen den Motor nur anzusteuern oder die Position über den Encoder nachzuregeln, wird bei der Sinuskommutierung das Statormagnetfeld wie bei einem Servomotor über den Drehgeber geregelt. Der Schrittmotor verhält sich in dieser Betriebsart nicht anders als ein hochpoliger Servomotor, d.h. die klassischen Schrittmotorgeräusche und Resonanzen verschwinden. Da der Strom geregelt wird, kann der Motor bis zu seinem maximalen Drehmoment auch keine Schritte mehr verlieren.

Falls der Controller erkennt, dass der Rotor durch Überlast hinter das Statorfeld zurückfällt, wird mit optimalem Feldwinkel und erhöhtem Strom nachgeregelt. Im entgegengesetzten Fall, d.h. wenn der Rotor durch sein Drehmoment eher vorläuft, wird der Strom automatisch reduziert, so dass Stromverbrauch und Wärmeentwicklung in Motor und Treiber gegenüber dem normalen, gesteuerten Betrieb sehr viel niedriger sind.

dsp**Drive**°

Bei dspDrive[®] wird der Strom im Motor direkt durch einen digitalen Signalprozessor geregelt. Gegenüber handelsüblichen ICs, die sowohl die Strommessung in der Wicklung als auch die Vorgabe des Sollstroms nur mit 6 oder 8 Bit auflösen, kann mit dem neuen dspDrive[®] die gesamte Regelung mit einer Auflösung von 12 Bit durchgeführt werden. Die Parameter des PI-Stromreglers können sowohl an den Motor als auch drehzahlabhängig vom Benutzer angepasst werden.

Dies hat folgende Vorteile in der Anwendung:

- Sehr ruhiger, resonanzarmer Lauf mit sinusförmigem Stromverlauf in den Wicklungen auch bei kleinen Drehzahlen.
- Sehr gute Schrittwinkelgenauigkeit und Gleichlauf auch im Open-Loop-Betrieb.
- Auch BLDC-Motoren können angesteuert werden.

Nano

Mit der integrierten, auf dem Java-Standard basierenden Programmiersprache NanoJ können auf den Steuerungen komplette Ablaufprogramme realisiert werden, die autonom ohne übergeordnete Steuerung abgearbeitet werden.

Die Programme können mit dem kostenlosen Editor NanoJEasy erstellt, direkt kompiliert und in die Steuerung geschrieben werden.

Nähere Informationen dazu finden Sie im separaten Programmierhandbuch.

Voreinstellungen

Der SMCI35 wird vorkonfiguriert im Takt-Richtungs-Modus ausgeliefert. Ein Anschluss an den PC ist nicht nötig. Der Phasenstrom kann in 10%-Schritten über DIP-Schalter eingestellt werden (10% = 400mA, max. 150% = 6A).

Am Stecker X4 sind die Eingänge für das Takt -, Richtungs- und Enable-Signal bereits vorkonfiguriert.

Der Schrittmodus ist nur über Software veränderbar. Voreingestellt ist Vollschritt. Durch die Mikroschritt-Emulation wird aber bereits im Vollschritt eine sehr gute Laufruhe und Performance des Schrittmotors erreicht.

Weitere Einstellungen

Mit der Einstellung der motorbezogenen Parameter lässt sich das Laufverhalten des Motors entsprechend den individuellen Anforderungen anpassen und optimieren. Die Parameter können mit Hilfe der Software NanoPro hinterlegt werden und erleichtern und verkürzen die Inbetriebnahme erheblich.

Hierzu ist ein Wandler von RS232 (3,3 V) auf USB nötig (Nanotec Artikelnummer: ZK-RS232-USB-3.3V).

Nähere Informationen dazu finden Sie im separaten NanoPro Benutzerhandbuch.

2 Anschließen und Inbetriebnahme

2.1 Übersicht

Steckverbindungen

Der Controller verfügt über folgende Steckverbindungen:

X1: Schnittstelle RS232 (3,3 V)

- X2: Anschluss Encoder
- X3: Anschluss Motor und Spannungsversorgung
- X4 und X5: Ein- und Ausgänge

Anordnung

Folgende Abbildung zeigt die Anordnung der Steckverbindungen auf der Platine:

2.2 Schrittmotor

Anschlussplan

Um einen Schrittmotor mit dem SMCI35 zu betreiben, müssen Sie die Verdrahtung gemäß nachfolgendem Anschlussplan vornehmen.

Die Anschlussbelegung für den jeweiligen Motor finden Sie auf dem jeweiligen Motordatenblatt, das auf www.nanotec.de heruntergeladen werden kann.

2.3 BLDC-Motor

Anschlussplan

Um einen BLDC-Motor mit dem SMCI35 zu betreiben, müssen Sie die Verdrahtung gemäß nachfolgendem Anschlussplan vornehmen.

Die Anschlussbelegung für den jeweiligen Motor finden Sie auf dem jeweiligen Motordatenblatt, das auf www.nanotec.de heruntergeladen werden kann.

2.4 Inbetriebnahme

Betrieb mit Voreinstellungen

Der SMCI35 wird mit folgenden Voreinstellungen ausgeliefert:

- Operationsmodus: Takt-Richtung
- Schrittmodus: Vollschritt (mit Mikroschritt-Emulation)
- Eingänge an Stecker X4 (alle 5 V):
 - Eingang 6 = Takt-Signal
 - Eingang 5 = Richtungs-Signal
 - Eingang 4 = Enable (low oder offen = Disable)
- Stromhöhe: 10%

Der Phasenstrom wird über DIP-Schalter eingestellt, siehe Abschnitt "3.4 Motorstrom einstellen".

Wenn Sie bei einem Controller im Auslieferungszustand nun Takte auf Eingang 6 geben, wird sich der angeschlossene Motor mit jedem Takt um einen Schritt (z.B. 1,8° mechanisch bei einem Standard-Schrittmotor) weiterdrehen.

Konfiguration mit NanoPro

Die folgenden Schritte sind nur nötig, wenn der Controller nicht im voreingestellten Takt-Richtungs-Modus betrieben oder wenn ein BLDC-Motor angeschlossen werden soll.

Sie finden hier die wesentlichen "Ersten Schritte", um mit dem SMCI35 schnell arbeiten zu können, falls Sie mit der Software NanoPro von einem PC aus arbeiten. Nähere Informationen finden Sie im separaten Handbuch zu NanoPro.

Falls Sie später mit einer SPS oder einem eigenen Programm arbeiten wollen, finden Sie die notwendigen Informationen im separaten Programmierhandbuch.

Machen Sie sich mit dem Controller SMCI35 und der zugehörigen Steuerungssoftware NanoPro vorab vertraut, bevor Sie die Steuerung für Ihre Applikation konfigurieren.

Gehen Sie wie folgt vor:

Schritt	Tätigkeit	Hinweis
1	Installieren Sie die Steuerungssoftware NanoPro auf Ihrem PC.	Download von www.nanotec.de
	Siehe dazu das separate Handbuch zu NanoPro.	
2	Schließen Sie den Controller gemäß Anschluss- plan an den Schrittmotor an.	Anschlussplan siehe Abschnitt 2. Detaillierte Informationen zu den Anschlüssen finden Sie in Abschnitt 3.
3	Legen Sie die Betriebsspannung an (12 V DC 48 V DC).	Die rote LED leuchtet kurz auf.
4	Installieren Sie ggf. den Konverter-Treiber für das Konverterkabel ZK-RS232-USB-3.3V.	Download von <u>www.nanotec.de</u> unter dem Menüpunkt Zubehör/Konverter
5	Verbinden Sie den Controller mit der USB- Schnittstelle Ihres PCs. Benutzen Sie dazu das Konverterkabel ZK-RS232-USB-3.3V.	Bestellbezeichnung: • ZK-RS232-USB-3.3V

Schritt	Tätigkeit	Hinweis	
6	Starteen Sie die Software NanoPro.	Das NanoPro-Hauptmenü öffnet.	
7	Wählen Sie die Registerkarte <kommunikation> aus. Ise Anzeigeneinstellungen Fehlerkorrektur Eingänge Ausgänge Kommunikation S</kommunikation>		
8	Wählen Sie im Feld "Schnittstelle" den COM- Port aus, an den Sie den SMCI35 angeschlossen haben.SchnittstelleCOM1Zeitüberschreitung beim Schreiben1000msZeitüberschreitung beim Lesen1000msBaudrate115200 bpsT	Die Nummer des COM- Ports, über welchen der Controller angeschlossen ist, finden Sie im Geräte- Manager Ihres Windows- PC (Systemsteuerung/ System/ Hardware).	
9	Wählen Sie im Auswahlfeld "Baudrate" den Eintrag "115200 bps".		
10	Überprüfen Sie die Stromeinstellung anhand des Motordatenblattes.	Es darf auf keinen Fall ein höherer Strom als der Nennstrom des Motors eingestellt sein!	
11	Wählen Sie die Registerkarte "Modus" aus. Modus Motoreinstellungen Bremse Anzeigeneinstellungen		
12	Klicken Sie auf die Schaltfläche <satz testen="">, um das voreingestellte Fahrprofil durchzuführen. Der angeschlossene Motor fährt im voreingestellten Fahrprofil (Default-Fahr- profil bei Neuinstallation). Satz testen Satz testen Daten speichern Daten auslesen</satz>		
13	Nehmen Sie nun Ihre eigenen gewünschten Einstellungen vor. Geben Sie z.B. ein neues Fahrprofil ein.	Siehe dazu das separate Handbuch zu NanoPro.	

3 Anschlüsse und Beschaltung

3.1 Ein- und Ausgänge: Stecker X4 und X5

Einleitung

Eine Übersicht über die Anschlussbelegung finden Sie im Anschlussplan in Abschnitt 2. In diesem Abschnitt wird detailliert auf die Belegung, Funktion und Beschaltung der Stecker X4 und X5 eingegangen.

Pinbelegung X4

Pin-Nr.	Name	Bemerkung
1	Output 1	Digitalausgang (max. +5 V)
2	Input 6	Digitaleingänge (max. 5 V);
3	Input 5	Bei BLDC-Motoren:
		• Input 5 = Hall-Sensor H2
4	Input 4	 Input 4 = Hall-Sensor H1
5	Analog In 1	Analogeingang (-10 V +10 V)
6	GND	

Pinbelegung X5

Beim Stecker X5 handelt es sich um einen JST-ZHR6-Stecker. Passendes Anschlusskabel: ZK-ZHR6-500 (Länge 500 mm, Einzellitzen).

Pin-Nr.	Name	Bemerkung
1	GND	
2	Output 3	Digitalausgänge (max. +5 V)
3	Output 2	
4	Input 3	Digitaleingänge;
5	Input 2	Bei BLDC-Motoren:
6	Input 1	Input 1 = Hall-Sensor H3

Funktion der Eingänge

Alle digitalen Eingänge – mit Ausnahme des Eingangs "Takt" im Takt-Richtungs-Modus – können mit Hilfe der Software NanoPro frei programmiert (z.B. als Endlagenschalter, Enable, etc.) und für eine Ablaufsteuerung mit NanoJ genutzt werden.

Alle Eingänge können mit NanoPro für "active-high" (PNP) oder "active-low" (NPN) konfiguriert werden.

Signalzustände an den Ausgängen

Folgende Tabelle zeigt die möglichen Signalzustände an den Ausgängen 1 bis 3:

Signalzustände			Bedeutung
Output 3	Output 2	Output 1	
	0	0	Drehüberwachung (Error) oder Endschalter
	0	1	Motor steht (wartet auf neuen Befehl)
	1	0	Busy (Steuerung bearbeitet letzten Befehl)
	1	1	Referenzpunkt oder Nullpunkt erreicht
1			Übertemperatur

Die Ausgänge können mit Hilfe der Software NanoPro frei programmiert werden.

Hinweis:

Ausgang 3 wird auch zur Anzeige von Fehlern und beim Einschalten des Controllers gesetzt.

Eingangsbeschaltung

Hinweis:

Die Spannung darf 5 V nicht überschreiten. Sie sollte zum sicheren Ausschalten unter 2 V sinken und zum sicheren Einschalten mindestens 4,5 V betragen.

Beschaltung der Hall-Sensoren bei BLDC-Betrieb

Siehe Abschnitt 2.3 "BLDC-Motor".

Ausgangsbeschaltung

Die Ausgänge sind TTL-Ausgänge Schaltung (5 V / max. 20 mA). Um den Ausgang testen zu können, kann eine LED mit Vorwiderstand gegen Masse eingebaut werden. Die LED leuchtet, wenn der Ausgang aktiv ist.

3.2 Anschluss Encoder: Stecker X2

Pinbelegung

Beim Stecker X2 handelt es sich um einen JST-ZHR5-Stecker. Passendes Anschlusskabel: ZK-ZHR5-90 (Länge 90 mm, Einzellitzen).

Pin-Nr.	Name	Bemerkung
1	GND	Bei BLDC-Motoren werden Pin 1 (GND) und Pin
2	Spur (B)	5 (+5 V) für die Versorgung der Hall-Sensoren
3	Index Spur (I)	verwendet, siehe Abschnitt 2.3 "BLDC-Motor".
4	Spur (A)	
5	+5 V	

Optionaler Encoder

An den Controller kann ein optionaler Encoder angeschlossen werden.

Standardmäßig ist die Regelung für einen Dreikanal-Encoder mit 500 Impulsen/Umdrehung bei einem 1.8°-Schrittmotor ausgelegt. Bei einem 0.9°-Schrittmotor sollten Sie einen Encoder mit 1000 Impulsen/Umdrehung verwenden, um die gleiche Regelungsqualität zu erreichen. Je nach Applikation kann es sinnvoll sein, eine höhere Encoderauflösung (bis max. 2000 Impulse/Umdrehung) zu verwenden, um die Regelungsqualität zu verbessern, oder eine niedrigere (min. 200 Impulse/Umdrehung) für Low-Cost-Applikationen bzw. zur reinen Schrittüberwachung.

Folgende Encoderauflösungen können grundsätzlich vom Controller verarbeitet werden: 192, 200, 400, 500, 512, 1000, 1024, 2000, 2048.

Empfehlung

Verwenden Sie möglichst Nanotec-Encoder mit der Bestellbezeichnung WEDS/WEDL-5541 Xxx.

Wenn **kein** Encoder benutzt wird, muss in der Registerkarte "Fehlerkorrektur" im Auswahlmenü "Drehgeberüberwachung" der Modus "Deaktivieren" eingestellt werden. Siehe dazu das separate Handbuch zu NanoPro.

Verwenden von Encodern mit Line-Treiber

Die Encoder der Serie WEDL mit Line-Treiber geben zusätzlich zum Encodersignal noch ein invertiertes Signal aus, das zur besseren Störsicherheit beiträgt und besonders bei großen Leitungslängen (> 500 mm) und benachbarten Störquellen zu empfehlen ist. Mit einem Line-Treiber/Drehgeber-Adapter kann das Differenzsignal ausgewertet werden.

Da der SMCI35 für den Gerätebau ausgelegt ist, werden Differenzsignale nicht ausgewertet, sodass nur die Kanäle A, B und I angeschlossen werden müssen, um eine Positionsüberwachung durchzuführen. Wir empfehlen, die Encoderleitung zu schirmen und zu verdrillen, um Störeinflüsse auf das Encodersignal von außen zu minimieren.

Sollte die Leitungslänge in Ihrer Applikation 500 mm überschreiten, oder sollten durch andere Ursachen Störungen auf den Leitungen vorhanden sein, empfehlen wir den Einsatz einer Steuerung SMCI33 oder SMCI47-S, für die es einen Adapter für Encoder mit Line-Treiber gibt.

3.3 Anschluss Motor und Spannungsversorgung: Stecker X3

3.3.1 Pinbelegung

Pin-Nr.	Name	Bemerkung
1	A	Datenblatt des angeschlossenen Schrittmotors beachten.
2	A/	Bei BLDC-Motoren:
		• A = V
3	В	• A/ = U
4	B/	• B = W
		• B/ = nicht verbunden
5	Vcc	Betriebsspannung +12 V DC +48 V DC
6	GND	Masse (0V)

3.3.2 Anschluss Schrittmotor

Allgemeines

Der Motor wird über ein vieradriges Kabel mit dem SMCI35 verbunden. Vorteilhaft ist ein paarig verdrilltes Kabel mit Schirmgeflecht.

Gefahr vor elektrischer Überspannung

Ein Vertauschen der Anschlüsse kann die Endstufe zerstören! Datenblatt des angeschlossenen Schrittmotors beachten. Bei anliegender Betriebsspannung niemals den Motor trennen! Leitungen **niemals** unter Spannung trennen!

3.3.3 Anschluss BLDC-Motor

Siehe Abschnitt 2.3 "BLDC-Motor".

3.3.4 Anschluss Spannungsversorgung

Zulässige Betriebsspannung

Die zulässige Betriebsspannung des SMCI35 liegt im Bereich von +12 bis +48 V DC und darf 50 V keinesfalls überschreiten bzw. 10 V unterschreiten.

An der Versorgungsspannung muss ein Ladekondensator von mindestens 4700 μ F (10000 μ F) vorgesehen sein, um ein Überschreiten der zulässigen Betriebsspannung (z.B. beim Bremsvorgang) zu vermeiden.

Gefahr vor elektrischer Überspannung
Ladekondensator von mind. 4700 µF anschließen!
Bei Motoren mit Flanschgröße 86x86 (Serie ST8918) oder größer einen Kondensator mit 10000 μ F anschließen!
Eine Betriebsspannung > 50 V zerstört die Endstufe!
Ein Vertauschen der Anschlüsse kann die Endstufe zerstören! Datenblatt des angeschlossenen Schrittmotors beachten.
Bei anliegender Betriebsspannung niemals den Motor trennen!
Leitungen niemals unter Spannung trennen!

Anschlussplan

Hinweis:

Gesamt-Anschlussplan siehe Abschnitt 2 "Anschließen und Inbetriebnahme".

Zubehör

Entsprechende Netzteile und Ladekondensatoren sind als Zubehör erhältlich:

Benennung	Bestellbezeichnung
Netzteil	NTS-xxV-yA
	(xx=Spannung: 12, 24 oder 48 V, y=Strom: 2,5, 5 oder 10 A)
	Hinweise zur Auslegung des benötigten Netzteils finden Sie in unserer FAQ auf www.nanotec.de.
Ladekondensator	Z-K4700 oder Z-K10000

Hinweis:

Weitere Informationen zu Zubehör finden Sie auf der Nanotec-Webseite: www.nanotec.de

3.4 Motorstrom einstellen

Einstellmöglichkeiten

Der Motorstrom kann softwaremäßig (NanoPro) oder hardwaremäßig über die DIP-Schalter auf der Platine eingestellt werden.

DIP-Schalter

Die DIP-Schalter bilden die ersten 4 Stellen des Binärsystems ab, wobei mit dem Schalter "0" die niederwertigste und mit dem Schalter "3" die höchstwertige Stelle eingestellt werden kann. Somit können dezimal die Werte 0 bis 15 eingestellt werden.

Vorgehensweise

Sind alle DIP-Schalter auf OFF gestellt (Dezimalwert 0), kann der Motorstrom über NanoPro vorgegeben werden. Bei allen anderen DIP-Schalterstellungen ergibt sich der Motorstrom (in % vom Effektivstrom 4 A) aus folgender Formel:

Motorstrom = Dezimalwert DIP-Schalter * 10%

Beispiel: Schalter 3 = ON, Schalter 2 = OFF, Schalter 1 = OFF, Schalter 0 = ON \rightarrow Dezimalwert = 9

 \rightarrow Motorstrom = 90% vom Effektivstrom = 3,6 A

	DIP-So	Phasentrom			
3	2	1	0	rel.	abs.
0	0	0	0	Nan	oPro
0	0	0	1	10 %	0,4 A
0	0	1	0	20 %	0,8 A
0	0	1	1	30 %	1,2 A
0	1	0	0	40 %	1,6 A
0	1	0	1	50 %	2 A
0	1	1	0	60 %	2,4 A
0	1	1	1	70 %	2,8 A
1	0	0	0	80 %	3,2 A
1	0	0	1	90 %	3,6 A
1	0	1	0	100 %	4 A
1	0	1	1	110 %	4,4 A
1	1	0	0	120 %	4,6 A
1	1	0	1	130 %	4,8 A
1	1	1	0	140 %	5,2 A
1	1	1	1	150 %	6 A

3.5 Schnittstelle RS232: Stecker X1

Einleitung

Der Controller verfügt über eine serielle TTL-RS232-Schnittstelle (3,3 V) für den Anschluss an einen PC.

Konverterkabel

Beim Anschluss an die USB-Schnittstelle des PCs ist das Konverterkabel ZK-RS232-USB-3.3V zu verwenden.

Pinbelegung

$\bigcirc \bigcirc \bigcirc \bigcirc$
3 2 1

Pin-Nr.	Name	Bemerkung
1	GND	schwarz
2	Тх	gelb
3	Rx	orange

4 Operationsmodi

Einleitung

Der Motor kann je Fahrprofil mit verschiedenen Operationsmodi betrieben werden. Aufgrund der großen Leistungsfähigkeit und Funktionsvielfalt bieten sie Konstrukteuren und Entwicklern eine schnelle und einfache Möglichkeit, vielfältige Antriebsanforderungen mit geringem Programmieraufwand zielgerichtet zu lösen.

Wählen Sie für jedes Fahrprofil den gewünschten Operationsmodus und konfigurieren Sie die Steuerung entsprechend Ihren Anforderungen.

Nähere Informationen dazu finden Sie im separaten Handbuch zu NanoPro.

Überblick Operationsmodi und deren Einsatzgebiet

Operationsmodus	Anwendung
Relativpositionierung Absolutpositionierung	Verwenden Sie diese Modi, wenn Sie eine bestimmte Position anfahren möchten. Der Motor fährt nach einem vorgegebenen Fahrprofil von einer Position A zu einer Position B.
Interne Referenzfahrt	Bei der internen Referenzfahrt fährt der Motor mit der eingestellten Minimaldrehzahl einen internen Referenzpunkt (den Indexstrich des Encoders) an.
Externe Referenzfahrt	Bei der externen Referenzfahrt fährt der Motor einen an den Referenzeingang angeschlossenen Schalter an.
Drehzahlmodus	Verwenden Sie diesen Modus, wenn Sie mit einer bestimmten Geschwindigkeit verfahren möchten (z.B. ein Förderband oder eine Pumpendrehzahl). Im Drehzahlmodus beschleunigt der Motor mit einer vorgegebenen Rampe von der Startdrehzahl (Start- frequenz "V Start") auf die eingestellte Maximaldreh- zahl (Maximalfrequenz "V Normal"). Mit mehreren Eingängen kann die Drehzahl fliegend (on-the-fly) auf unterschiedliche Geschwindigkeiten geregelt werden
Flagpositioniermodus	Der Flagpositioniermodus bietet eine Kombination aus Drehzahl- und Positioniermodus. Der Motor wird zu- nächst im Drehzahlmodus betrieben; bei Erreichen eines Triggerpunktes wird in den Positioniermodus umgeschaltet und die eingestellte Sollposition (relativ zur Triggerposition) angefahren. Einsatz dieses Operationsmodus z.B. zum Etikettieren: der Motor fährt zuerst mit der eingestellten Rampe auf die Synchrongeschwindigkeit des Fördergutes. Bei Erkennen des Labels wird der voreingestellte Weg (Position) zum Aufbringen des Etiketts gefahren.

Operationsmodus	Anwendung
Takt-Richtungs-Modus links/rechts	Verwenden Sie diese Modi, wenn Sie den Motor mit einer übergeordneten Steuerung (z.B. CNC- Steuerung) betreiben möchten.
	Im Takt-Richtungs-Modus wird der Motor über zwei Eingänge durch eine übergeordnete Positioniersteue- rung (Indexer) mit einem Takt- und einem Richtungs- signal betrieben.
Analog- und Joystickmodus	Die Drehzahleinstellung des Motors erfolgt in diesem Operationsmodus in einfacher Weise über ein Potentiometer oder einen Joystick (–10 V bis +10 V). Verwenden Sie diesen Modus, wenn Sie mit dem
	Motor in einer einfachen Applikation:
	• eine bestimmte Drehzahl z.B. über ein externes Potentiometer einstellen möchten,
	 oder synchron über eine übergeordnete Steuerung mit Analogausgang (–10 V bis +10 V) verfahren möchten.
Analog-Positioniermodus	Verwenden Sie diesen Modus, wenn Sie eine be- stimmte Position anfahren möchten. Die Spannungshöhe am Analog-Eingang ist proportional zur gewünschten Position.
Drehmomentmodus	Verwenden Sie diesen Modus, wenn Sie unabhängig von der Drehzahl ein gewisses Abtriebsdrehmoment wünschen, wie es bei typischen Auf-und Abwickelapplikationen der Fall ist. Das maximale Moment wird über den Analog-Eingang vorgegeben.

Wahl des Operationsmodus in NanoPro

Modus	Motoreinstellungen	Bremse	Anzeigeneinstellungen	Fehlerkorrektur	Eingänge	Ausgänge	Kommunikat
Fahrp	rofile		Operationsmodus	Positions	modus - Ab:	solut	
01. P 02. P 03. P 04. P 05. P 06. P 07. P 08. P 09. P	ositionsmodus - Relati ositionsmodus - Relati	 ×, 400, 	Stellgröße Richtung Startgeschwindigke Sollgeschwindigke	Positions Positions Interne F Externe f Drehzahl Flagposit Takt-Ric t Takt-Ric	modus - Rel modus - Abs Referenzfahr Referenzfah ion htung links htung rechts	ativ solut t rt	▲ ■ ■

5 Fehlersuche und -behebung

Vorgehensweise Fehlersuche und -behebung

Gehen Sie bei der Fehlersuche und bei der Fehlerbehebung behutsam vor, um eine Beschädigung des Controllers zu vermeiden.

Gefahr vor elektrischer Überspannung Eine Betriebsspannung > 50 V und ein Vertauschen der Anschlüsse kann die Endstufe zerstören. Bei anliegender Betriebsspannung niemals den Motor trennen! Leitungen niemals unter Spannung trennen!

Mögliche Fehler

Fehler	Mögliche Ursache	Behebung
Controller ist nicht bereit	Datenübertragung zum SMCI35 ist nicht möglich (Kommunikationsfehler): Falscher COM-Port ausge- wählt.	Wählen Sie in der Registerkarte <kommunikation> den Port aus, an dem Sie am PC den SMCI35 angeschlossen haben (z.B. "COM- 1"). Den verwendeten Port finden Sie im</kommunikation>
		Gerätemanager Ihres PCs.
	Falsche Baudrate eingestellt.	Wählen Sie in der Registerkarte <kommunikation> die Baudrate 115200 bps aus.</kommunikation>
	Kommunikationskabel nicht angesteckt oder unterbrochen (falscher Konverter verwendet).	Verwenden Sie den empfohlenen Konverter von Nanotec:Bestellbezeichnung: ZK-RS232-USB-3.3V
	Es ist eine nicht vorhandene Motornummer (Modulnummer) eingestellt.	Richtige Modulnummer einstellen. Siehe separates Handbuch zu NanoPro.
	Spannungsversorgung des SMCI35 ist unterbrochen.	Spannungsversorgung überprüfen und ggf. einschalten.
	Ein anderes offenes Pro- gramm blockiert den COM- Port, an dem Sie der SMCI35 angeschlossen haben.	Schließen Sie ggf. andere Pro- gramme auf Ihrem PC.
	Während der Ausgabe eines Fahrprofils wurde versucht,	Betätigen Sie die Schaltfläche <ja>, um das Fahrprofil anzuhalten.</ja>
	nicht zulässige Daten an den Controller zu senden.	Der SMCI35 wechselt wieder in den Zustand "Bereit". Anschließend können die Daten nochmals an den Controller übertragen werden.
Übertragungs- fehler	Die Datenübertragung zum SMCI35 ist gestört (Sender oder Empfänger werden gestört).	Kontrollieren Sie die möglichen Ur- sachen für den Übertragungsfehler und stellen Sie die Fehlerursache ab.
Positionsfehler	Motor kann Position nicht erreichen oder Endschalter wurde überfahren.	Schaltfläche <ja> der Fehlermel- dung betätigen; der Fehler wird zurückgesetzt.</ja>

6 Technische Daten

Elektrische Anschlüsse

Betriebsspannung U _b	DC 12 V bis 48 V ±4%
max. Phasenstrom	einstellbar bis max. 6 A/Phase Dauerstrom 4 A/Phase
Stromabsenkung	einstellbar 0 bis 150% vom Nennstrom
Schnittstelle	TTL-RS232 (3,3 V)

Steuerungsparameter

Schrittauflösung	Vollschritt, Halbschritt, Viertelschritt, Fünftelschritt, Achtelschritt, Zehntelschritt, 16tel-Schritt, 32stel-Schritt, 64stel-Schritt, Adaptiver Mikroschritt, Vorschubkonstante
Schrittfrequenz	16 kHz im Vollschritt, im Mikroschritt entsprechende Vielfache (z.B. 1 MHz bei 1/64) Max. Eingangsfrequenz Takt-Richtungs-Modus: 200 kHz
Positionsüberwachung	abhängig von Drehgeberauflösung

Schutzschaltungen

Über- und Unterspannung	Schutzschaltung bei Spannung > 50 V bzw. < 10 V
max. Kühlkörpertemperatur	ca. 80 °C
max. Umgebungstemperatur	0 bis 40 °C

Ein- und Ausgänge

Eingänge	•	6 Digitaleingänge (TTL, max. 5 V)
	•	1 Analogeingang (+10 V / —10 V)
Ausgänge	•	3 Digitalausgänge (TTL, +5 V, 20 mA)

Abmessungen SMCI35

Komplette Maßblätter sind auf www.nanotec.de als Download erhältlich.

Steckerbezeichnungen

Folgende Stecker sind am SMCI35 vorhanden:

- Stecker X1: Stiftleiste 2.54
- Stecker X2 und X5: JST-ZH
- Stecker X3 und X4: RIA 059

Übertemperaturschutz

Bei einer Temperatur von ca. 75 °C wird der Leistungsteil des Controllers abgeschaltet und Ausgang 3 angeschaltet. Nach Abkühlung und Neustart des Controllers funktioniert dieser wieder normal.

Es wurden Temperaturtests mit folgenden Bedingungen durchgeführt:

- Betriebsspannung: 24 V / 48 V DC
- Motorstrom: 100% (4 A) / 150% (6 A)
- Operationsmodus: Drehzahlmodus Vollschritt, 25 U/min und 0 U/min
- Betriebsumgebung: Temperaturschrank Binder FED 53, Umluftbetrieb bei 100% Lüfterdrehzahl
- Umgebungstemperatur: 45 °C (50 °C, 55 °C, 60 °C bei der Vergleichsmessung)
- Messstelle: Rückseite der Controller bei den Leistungstransistoren, außen am Gehäuse

Die folgenden Grafiken zeigen die Ergebnisse der Temperaturtests:

Betriebsspannung 24 V

Betriebsspannung 48 V

Index

Α

Ausgänge	12
Ausgangsbeschaltung	14

В

Betriebsspannung	17
BLDC-Motor	9

С

Closed-Loop Stronnegelung

D

DIP-Schalter	18
dspDrive	6

Ε

Eingänge	12
Eingangsbeschaltung	13
Encoder	14

F

Funktionen	5

Η

Hall-Sensoren	13
1	

•			
Inbetriebn	ahme	 	10

Μ

Motoranschluss
BLDC-Motor16

Schrittmotor16
Motorstrom
N
NanoJ6
0
Operationsmodi20
Р
Phasenstrom18
Pinbelegung
Stecker X1 19
Stecker X214
Stecker X3 16
Stecker X4 12
Stecker X5 12
R

RS232-Schnittstelle		19
---------------------	--	----

S

Schutzschaltungen	23,	24
Spannungsversorgung		17
Steckverbindungen		7

U

Übertemperaturschutz 24

Ζ

Zubehör Spannungsversorgung 17
