

Technical Manual

Stepper driver SMCI33

NANOTEC ELECTRONIC GmbH & Co. KG Gewerbestraße 11 D-85652 Landsham near Munich, Germany Tel. +49 (0)89-900 686-0 Fax +49 (0)89-900 686-50

info@nanotec.com

Editorial

© 2010

Nanotec[®] Electronic GmbH & Co. KG Gewerbestraße 11 D-85652 Landsham / Pliening, Germany

Tel.: +49 (0)89-900 686-0 Fax: +49 (0)89-900 686-50

Internet: www.nanotec.de

All rights reserved!

MS-Windows 2000/XP/Vista are registered trademarks of Microsoft Corporation.

Version/Change overview

Version	Date	Changes	
1.0	2009-02-20	New issue C+P	
2.0	2009-07-01	Revision C+P	
2.1	2010-04-08	Revision C+P	

About this manual

Target group

This technical manual is aimed at designers and developers who need to operate a Nanotecâ stepper motor without much experience in stepper motor technology.

Important information

This technical manual must be carefully read before <u>installation and commissioning of the stepper motor control</u>.

Nanotec® reserves the right to make technical alterations and further develop hardware and software in the interests of its customers to improve the function of this product without prior notice.

This manual was created with due care. It is exclusively intended as a technical description of the product and as commissioning instructions. The warranty is exclusively for repair or replacement of defective equipment, according to our general terms and conditions, liability for subsequent damage or errors is excluded. Applicable standards and regulations must be complied with during installation of the device.

For criticisms, proposals and suggestions for improvement, please contact the above address or send an email to: info@nanotec.com

Additional manuals

Please also note the following manuals from Nanotec:

NanoPro User Manual	Configuration of controllers with the NanoPro software	User Manual Wasaba Kasaba Certai salama in droper mala Fig. 8 Des malas Salama in the salama in
Programming manual	Controller programming	Programming Manual for Stepper Motor Controls

The manuals are available for download on www.nanotec.com.

Contents

1	Overview	5
2	Connection and commissioning	7
2.1	Connection diagram	7
2.2	Commissioning	9
3	Connections and circuits	11
3.1	Inputs and outputs (I/O): Connector X1	11
3.2	Encoder connection: Connector X2	13
3.3	Stepper motor connection: Connector X3	14
3.4	Voltage supply connection: Connector X4	16
3.5	Interface RS485 network: Connector X5	17
4	Operating modes	19
5	Troubleshooting	21
6	Technical data	23
Index		25

1 Overview

Introduction

The stepper driver SMCl33 is an extremely compact and cost-effective constant current power output stage with integrated Closed-Loop current control.

Due to the great capacity and functions available, it offers designers and developers a rapid and simple method of resolving numerous drive requirements with less programming effort.

It is used for controlling standard stepper motors (including with attached encoders) or motors with integrated encoders or brakes.

The SMCI33

Variants

The SMCI33 is available in the following variants:

- SMCI33-1: with USB interface (drivers neccessary)
- SMCI33-2: with RS-485 interface

SMCI33 functions

The stepper driver SMCI33 contains the following functions:

- Microstep 1/1 1/64 Final output stage (0.014° step resolution)
- Closed-Loop current control (sinusoidal commutation via the encoder)
- Powerful DSP microprocessor for flexible I/O
- Rotation monitoring for optional encoder
- RS485 or USB interface for parameterisation and control
- · Network capability of up to 32 motors
- Easy programming with the Windows software NANOPRO

Operating modes

The following operating modes can be selected:

- Positioning
- Speed
- Flag positioning
- Clock direction
- Analogue or joystick operation (±10 V)
- Analogue positioning mode
- Torque mode

Function overview

The operating behaviour of the motor can be set and optimised according to individual requirements by setting the motor-related parameters such as phase current (selectable in 1% increments), step resolution (from 1.8° - 0.014°), as well as the adaptive microstep (automatic adaption of step width). Machine-related parameters can be set using the NANOPRO software and significantly reduce commissioning time:

- · Distance in steps, degrees or mm
- · Speed in Hertz, rpm or mm/s
- Feed constant in mm/revolution
- Gear reduction with reverse clearance

Three adjustable reference modes (external and internal) enable automatic machine settings, whereby external reference switches may be inapplicable if there is a shift < 360° possibly due to the index signal of the internal encoder.

Even if stepper motors do not lose steps during normal operation, the integrated speed control provides additional security in all operating modes, e.g. against motor stalling or other external sources of error. The monitoring function detects a stalled motor or step loss after half a step at the most (for 1.8° stepper motors).

Automatic error correction is possible after the drive profile is ended or during the drive.

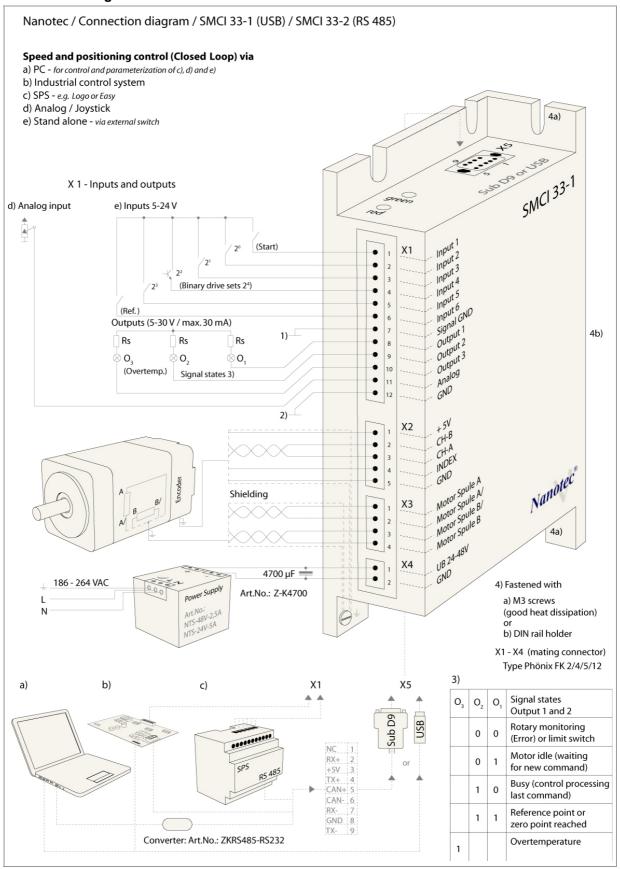
Closed-Loop current control (sinusoidal commutation via the encoder)

In contrast to conventional stepper motor controls where only the motor is actuated or the position adjusted via the encoder, sinusoidal commutation controls the stator magnetic field as in a servomotor via the rotary encoder. The stepper motor acts in this operating mode as nothing more than a high pole servomotor, i.e. the classic stepper motor noises and resonances vanish. As the current is controlled, the motor can no longer lose any steps up to its maximum torque.

If the driver recognises that the rotor is falling behind the stator field due to overload, adjustments are made with optimal field angle and increased current. In the opposite case, i.e. if the rotor is running forward due to the torque, the current is automatically reduced so that current consumption and heat development in the motor and driver are much lower compared to normal controlled operation.

2 Connection and commissioning

2.1 Connection diagram


Introduction

To operate a stepper motor with the SMCI33 stepper driver, the wiring must be implemented according to the following connection diagram.

Inputs (Pin 1 to 6) on the connector X1 and the encoder input (connector X2) can be used optionally.

Connection diagram SMCI33

2.2 Commissioning

Provisions

The connection and commissioning of the SMCI33 stepper motor are described below

The main "First steps" are described here to work as fast as possible with the SMCI33 if you want to work with the NANOPRO software from a PC. You will find more detailed information in the separate NANOPRO manual.

If you want to work at a later time with a PLC or your own program, you will find the necessary information in the separate "Command Reference".

Familiarise yourself with the SMCI33 stepper driver and the corresponding control software NANOPRO before you configure the driver for your application.

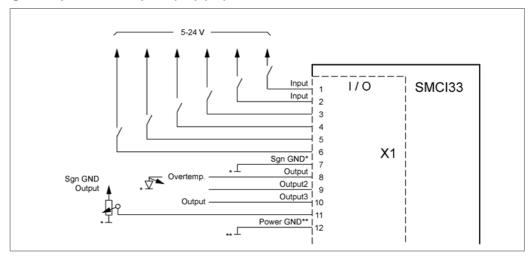
Procedure

Proceed as follows to commission the driver:

Step	Action	Note
1	Install the driver software NANOPRO on your PC. See the separate manual on NANOPRO as well.	Download from www.nanotec.com/downloads.
2	Connect the driver to the stepper motor according to the connection diagram.	Connection diagram, see Section 2.1. Detailled information on connections can be found in Chapter 3 "Connections and circuits".
3	Switch on the operating voltage (24 V DC 48 V DC).	The green LED lights up.
4	Connect the driver with your PC. Use one of the following converter cables for this purpose: • ZK-RS485-RS232 for connection to the serial interface • ZK-RS485-USB or standard USB cable type MINI-B for connection to the USB interface (for SMCI33-1)	Order number: ZK-RS485-RS232 ZK-RS485-USB Note: Download the necessary driver from www.nanotec.com under the menu item Accessories/Converter
5	Start the NANOPRO software. Non-Part Start (Start)	The NANOPRO main menu appears.
6	Select the "Communication" tab. Brake Display Properties Errorcorrection Input Output Communication SI	

Step	Action			Note
7	In the field "Port", select the COM port to which the SMCI33 is connected.			The number of the COM port to which the driver is
	Port	СОМ1	•	connected can be found in the device manager of your
	Write Timeout	1000	ms	Windows' PC (System Supervision/ System/
	Read Timeout	1000	ms	Hardware).
	Baudrate	115200 bps	_	
8	Select the entry "115200 bps" in the selection field "Baudrate".			
9	Select the "Movement Mode" tab.			
	Movement Mode Motor Settings Brake Display Properties Errorcom			
10	Click on the button <test record=""> to carry out the pre-set travel profile.</test>			The connected motor operates with the pre-set
	Test Record			travel profile (default travel profile after new
	Stop Record			installation).
	Save to Motor			
	Read from Motor			
11	You can now enter your required settings. For instance, you can enter a new travel profile.		See the separate manual on NANOPRO as well.	

3 Connections and circuits


3.1 Inputs and outputs (I/O): Connector X1

Introduction

An overview of the assignments can be found in the connection diagram in Section 2.1.. This section looks in detail at the assignment, functions and circuits of the connector X1..

The connectors and sockets used are from Phönix, Order number: FK-MC 2/4/5/12.

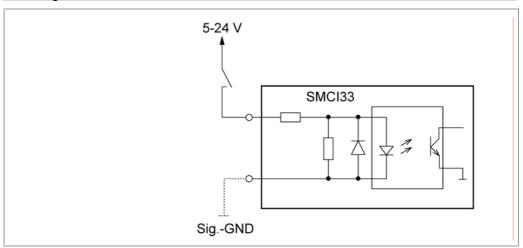
Connection diagram inputs and outputs (I/O) (X1)

Pin assignment connector X1: Inputs and outputs (I/O)

Pin-	Name	Observations	Operating mode					
No.			Position	Speed	Flag position	Clock direction	Analogue	Joystick
1	Input1	5-24 V Optocoupler	Start Reset	Enable	Start	Enable	Enable	Enable
2	Input2	5-24 V Optocoupler	Travel profile	Speed	Travel profile	Manual mode	Speed	Speed
3	Input3	5-24 V Optocoupler	Travel profile	Speed	Travel profile	Manual mode	Speed	Speed
4	Input4	5-24 V Optocoupler	Travel profile	Speed	Travel profile	Ext. limit switch	Speed	Speed
5	Input5	5-24 V Optocoupler	Travel profile	Speed	Trigger	Direction	Speed	Speed
6	Input6	5-24 V Optocoupler	Ext. limit switch	Direction	Ext. limit switch	Clock	Direction	
7	Com	Signal GND						
8	Output1	Open-Collector						
9	Output2	Open-Collector						
10	Output3	Open-Collector						
11	Analogue In	-10 V +10 V					Analogue In	Analogue In
12	GND	Power & Analogue GND						

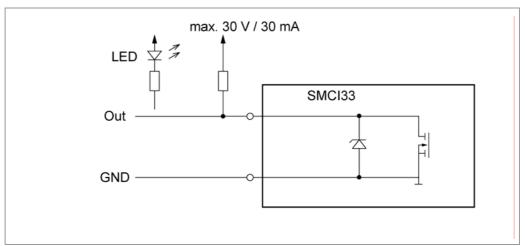
Note:

The Com and GND connections are not joined. Com provides the mass for the inputs and GND provides the mass for the outputs and the internal circuits.


Input circuits

All inputs (apart from the "Analogue In" input) are electrically isolated by optocouplers from the voltage supply of the SMCI33 and designed for 5 - 24 V input signals at an input current of 10 mA.

The digital inputs 1 to 6 can be configured with the aid of the software NANOPRO for "active-high" or "active-low". In addition, these can be freely programmed there, e.g. as limit switch, enable, etc.


Note:

The voltage should drop below 2 V for safe switching off and be at least 4.5 V for safe switching on.

Output circuits

The outputs are transistor outputs in Open-Collector circuits (0 switching, max. 30 V / 30 mA). An LED can be integrated to test the output. The LED lights up when the output is active.

3.2 Encoder connection: Connector X2

Optional encoder

An optional encoder can be connected to the stepper driver.

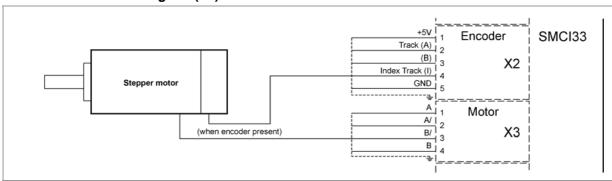
By default, the closed-loop control for a three-channel encoder is set up with 500 pulses/revolution in an 1.8° stepping motor. With an 0.9° stepping motor, you should use an encoder with 1000 pulses/revolution to achieve the same control quality. Depending on the application, it may make sense to use higher encoder resolutions (up to max. 2000 pulses/revolution) to improve control quality or to use a lower resolution (min. 200 pulses/revolution) for Low-Cost applications or for step monitoring alone.

The following encoder resolutions can normally be processed by the driver: 192, 200, 256, 400, 500, 512, 1000, 1024, 2000, 2048.

Recommended:

Where possible, use Nanotec encoders with the order number HEDS/HEDL-5540 Xxx.

If an encoder is **not** used, the mode "Disable" must be set in the tab "Errorcorrection" in the selection menu "Rotation Direction Mode". See the separate manual on NANOPRO as well.


Using encoders with line driver

As well as the encoder signal, the encoders of the HEDL series with line driver also output an inverted signal that contributes to better interference immunity and is especially recommended for long cable lengths.

SMCI drivers in order to monitor positioning. We recommend shielding and twisting the encoder line to minimise external interference influences on the encoder signal.

In the third quarter of 2009 Nanotec is bringing an adapter onto the market which can also evaluate the differential signal.

Encoder connection diagram (X2)

Note:

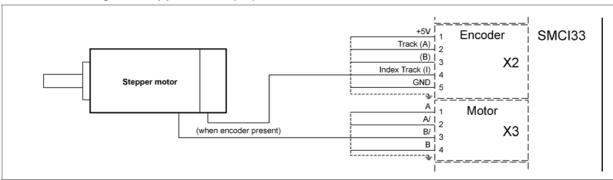
Complete connection diagram - see Section 2.1.

Pin assignment connector X2: Encoder

Pin-No.	Name	Observations
1	+5 V	
2	Track (A)	
3	Track (B)	
4	Index track (I)	
5	GND	

3.3 Stepper motor connection: Connector X3

General information


The motor is connected to the SMCl33 with a 4-wire cable. Twisted wire pair cables with braided shields are recommended.

Danger of electrical surges

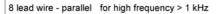
Mixing up the connections can destroy the output stage! Never disconnect the link when operating voltage is applied! **Never** disconnect lines when live!

Connection diagram stepper motor (X3)

Note:

Complete connection diagram - see Section 2.1.

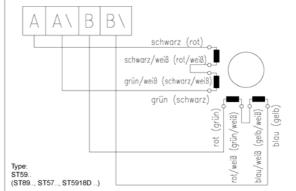
Pin assignment connector X3: Stepper motor


Pin-No.	Name	Observations
1	A	See also data sheet of connected
2	A/	stepper motor (colour code of 4 wires).
3	B/	wiics).
4	В	

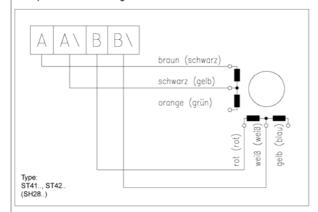
If you are using a motor with 6 or 8 connections, you need to connect the windings.

The diagram on the next page shows four wiring plans for motors with 6 or 8 connections (page from the Nanotec product catalogue).

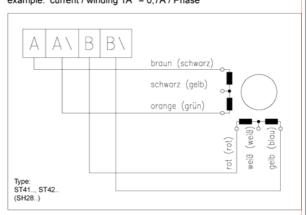
Details can be found on the Nanotec website www.nanotec.com.



current per winding x 1,4 = current per Phase example: current / winding 1A = 1,4A / Phase

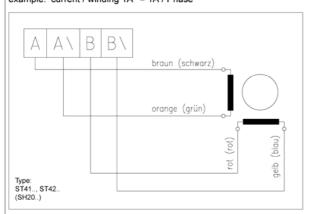

8 lead wire - serial for low frequency < 1 kHz

current per winding x 0,7 = current per Phase example: current / winding 1A = 0,7A / Phase

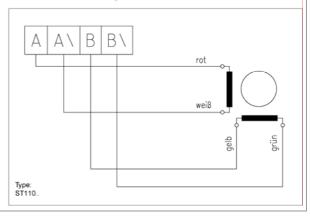


6 lead wire

current per winding = current per Phase example: current / winding 1A = 1A / Phase



current per winding x 0,7 = current per Phase example: current / winding 1A = 0,7A / Phase



4 lead wire

current per winding = current per Phase example: current / winding 1A = 1A / Phase

current per winding = current per Phase example: current / winding 1A = 1A / Phase

3.4 Voltage supply connection: Connector X4

Permissible operating voltage

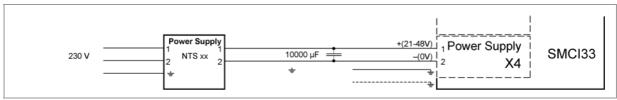
The permissible operating voltage for the SMCI33 stepper driver lies between +24 and +48 V DC; it must not exceed 50 V or fall below 21 V .

A charging condenser with minimum 4700 μ F (10000 μ F) must be provided for the operating voltage to prevent exceeding the permissible operating voltage (e.g. during braking).

Danger of electrical surges

Connect charging condenser with minimum 4700 µF!

Connect a condenser with $10000\mu F$ for motors with flange size 86x86 (series ST8918) or greater!


An operating voltage > 50 V will destroy the output stage!

Mixing up the connections can destroy the output stage!

Never disconnect the link when operating voltage is applied!

Never disconnect lines when live!

Connection diagram voltage supply (X4)

Note:

Complete connection diagram - see Section 2.1.

Voltage supply connections: Connector X4

Pin-No.	Name	Observations
1		Switch on the operating voltage (+24 V DC +48 V DC)
2	GND	Earth (0 V)

Accessories for voltage supply

Appropriate power packs and charging condensers are available as accessories:

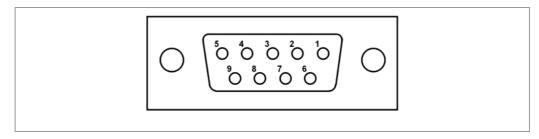
Name	Order number	
Power pack	NTS-xxV-xA	
Charging condenser	Z-K4700 or Z-K10000	

Note:

Further information about accessories can be found on the Nanotec website: www.nanotec.com

3.5 Interface RS485 network: Connector X5

SMCI33 in a network


Up to 254 stepper drivers can be controlled in a network from a PC or PLC.

These network connections are set up via the RS485 interface.

RS485 interface (D-Sub socket connector): Connector X5

A 9 pin D-Sub socket connector is located on the top of the SMCl33 (connector X5). The connector X5 provides the optional connection to the RS485 network.

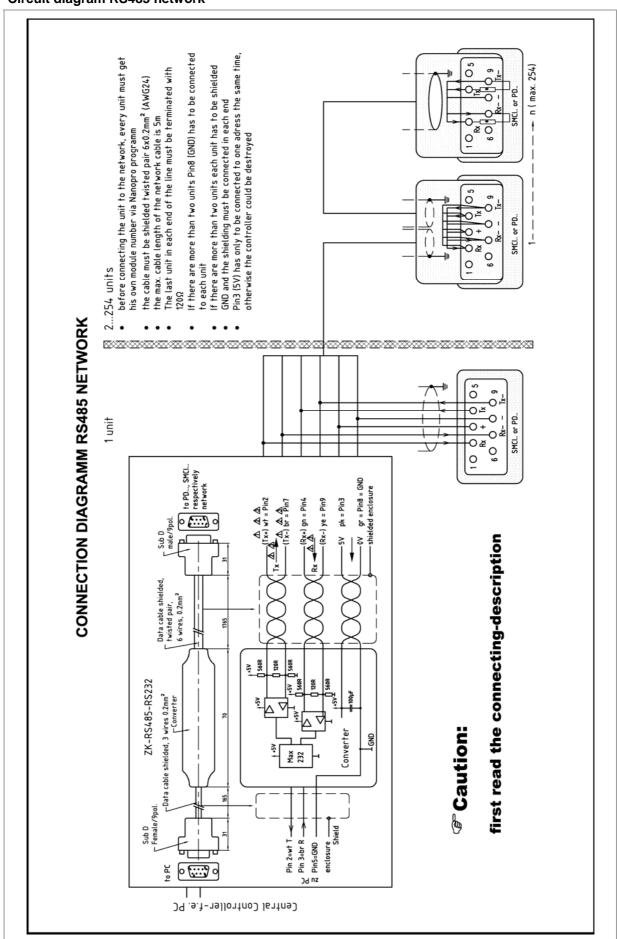
RS485 socket connector

Pin assignment connector X5: RS485 interface

Pin-No.	Name	Observations
1	NC	not assigned
2	A	RS-485 Rx+
3	+5 V	Output +5 V
4	Υ	RS-485 Tx+
5	NC	
6	NC	
7	В	RS-485 Rx-
8	GND	Output GND (0 V)
9	Z	RS-485 Tx-

Two-wire operation

To enable RS-485 two-wire transmission capability, all bus stations must have a direction control.


An intelligent converter, which automatically switches to transmission mode when a start bit is received at the RS-232 interface and returns to reception mode at the end of the stop bit, enables two-wire operation of the SMCI33. This solution does not require software support.

We can recommend the ICP-7520 converter, for example, that is available from Schuricht.

Talk to our Technical Hotline if you require support for this.

Circuit diagram RS485 network

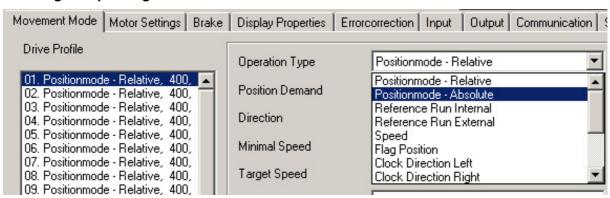
4 Operating modes

Introduction

Depending on the drive profile, the motor can be operated using a total of 14 different operation modes. Due to the good performance and variety of functions available, they offer designers and developers a rapid and simple method of resolving numerous drive requirements with less programming effort.

Select the required operating mode for each drive profile and configure the controller according to your requirements.

More detailed information can be found in the separate NanoPro manual.


Overview of operating modes and their areas of application

Operation mode	Application		
Relative	Use this mode when you wish to travel to a specific		
Absolute	position. The motor travels according to a specified drive profile from a Position A to a Position B.		
Internal reference run	During the internal reference run, the motor travels to an internal reference point at the set minimum speed.		
External reference run	During an external reference run, the motor travels to a switch connected to the reference input.		
Speed mode	Use this mode when you wish to travel with a specific speed (e.g. a conveyor belt or pump speed). In the speed mode, the motor accelerates with a specified ramp from the starting speed (start frequency		
	"V Start") to the specified maximum speed (maximum frequency "V Normal").		
	Several inputs enable the speed to be changed on- the-fly to different speeds.		
Flag positioning mode	The flag positioning mode offers a combination of the speed and positioning modes. The motor is initially operated in speed mode; when a trigger point is reached, it changes to the positioning mode and the specified setpoint position (relative to the trigger position) is approached.		
	This operating mode is used for labeling, for example: the motor first travels with the set ramp to the synchronous speed of the conveyed goods. When the labels are detected, the preset distance (position) is traveled to apply the labels.		

Operation mode	Application
Clock direction mode, left	Use this mode when you wish to operate the motor
Clock direction mode, right	with a superordinate controller (e.g. CNC controller).
Clock direction mode, Int. Ref.	In the clock direction mode, the motor is operated via two inputs with a clock and a direction signal from a superordinate positioning control (indexer).
Clock direction mode, Ext. Ref.	Depending on the mode selected (Int. Ref. / Ext. Ref.), the internal and external reference runs are supported.
Analog and Joystick mode	The motor is controlled in this operating mode simply with a potentiometer or a joystick (–10 V to +10 V).
	Use this mode if you want to use the motor in a simple application:
	Setting a specific speed, e.g. via an external potentiometer,
	 Traveling synchronously with a superordinate controller with analog output (–10 V to +10 V).
Analog positioning mode	Use this mode when you wish to travel to a specific position.
	The voltage level on the analog input is proportional to the required position, thus enabling servo behavior.
Torque mode	Use this mode when you require a specific output torque independent of the speed as is the case in typical winding and unwinding applications. The maximum torque is specified via the analog input.

Selecting the operating mode in NanoPro

5 Troubleshooting

Troubleshooting procedure

Proceed with care during troubleshooting and error rectification to avoid damaging the driver.

Danger of electrical surges

An operating voltage > 50 V and incorrect connections can destroy the end stage. Never disconnect the link when operating voltage is applied!

Never disconnect lines when live!

Possible error

Error	Possible cause	Rectification
Driver is not ready	Data transmission to SMCI33 not possible (communication error): Incorrect COM port selected.	In the "Communication" tab, select the PC port to which you have connected the SMCI33 (e.g." COM-1") The port used can be found in the
		device manager of your PC.
	Communication cable not connected or interrupted (incorrect RS232-RS485 converter used).	Function is not guaranteed with third-party 4-wire cables and 2-wire Nanotec converters do not function. Use the recommended RS232-RS485 converter from Nanotec:
		Order number: ZK-RS485-RS232
	A non-existent motor number (module number) is set.	Set the correct module address. See separate manual on NANOPRO.
	The power supply of the SMCl33 is interrupted.	Check voltage supply, switch on if necessary.
	Another open program is blocking the COM port to which the SMCI33 is connected.	Close down other programs on your PC.
	Inadmissible data was sent to the driver during the output of	Click on the <yes> button to stop the travel profile.</yes>
	a travel profile.	The SMCI33 switches back to the "Ready" state. The data can then be resent to the driver.
Transmission error	Data transmission to the SMCI33 is disturbed (sender or receiver are disturbed).	Check the possible causes for the transmission error and rectify the cause of the error.
Position error	A button was clicked while the driver was in error mode (position error or limit switch in normal operation).	Click the button <yes> in the error message: the error is reset.</yes>

Error	Possible cause	Rectification
Red LED on the SMCI33 lit up.	Overtemperature of power electronics > 75 °C	Switch off driver and allow to cool. The error is reset when the SMCI33 is disconnected from the power supply unit.
	Undervoltage	Check voltage supply.

6 Technical data

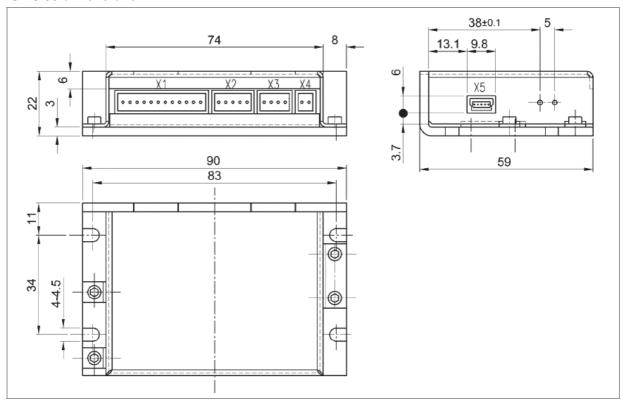
Electrical connections

Operating voltage U _b	DC 24 V to 48 V ±4%
Max. phase current	Adjustable up to max. 3 A/Phase
	Continuous current 2 A/Phase
Current drop	Adjustable 0 to 80% of phase current
Interfaces	SMCI33-1: USB standard
	SMCI33-2 RS-485 (4-wire) 19200 Baud (adjustable) 1 start bit, 8 data bits, 1 stop bit no parity

Driver parameters

Step resolution	Full step
	Half step
	Quarter step
	Fifth step
	Eighth step
	Tenth step
	16th step
	32th step
	64th step
	Adaptive microstep (1/128)
Step angle	1.8°
Operating modes	Position
	Speed
	Flag position
	Clock direction
	Analogue
	Joystick
Step frequency	0 to 50 kHz in clock direction mode
	0 to 25 kHz in all other modes
Position monitoring	Automatic error correction up to 0.9°

Protective circuits


Overvoltage and undervoltage	Protective circuit for voltages > 50 V or < 21 V
Max. heat sink temperature	Approx. 67 °C External ventilation may be required in full step operation, depending on the switch-on duration, current drop set and external cooling area.
Max. ambient temperature	0 to 40 °C

Inputs and outputs

Inputs	6 optocouplers 5 – 24 V ±10% • Safe switch off: max. 2 V	
	 Safe switch on: min. 4.5 V Signal delay time: Inputs 1 to 5: 120 µs 	
	• Input 6: 10 μs	
Outputs	3 transistor outputs in Open-Collector circuits (0 switching, max. 30 V / 30 mA)	

SMCI33 dimensions

A complete set of datasheets is available for downloading at www.nanotec.com.

Connectors

The following connectors are available on the SMCI33:

- Connectors X1, X2, X3 und X4: Phönix connector, Type MICRO COMBICON
- Connector X5
 - SMCI33-1: Mini-USB Type BSMCI33-2: Sub-D 9-pin (RS485)

Index

A	0	
Accessories fo r volta ge supply16	Operating modes	6, 19
С	Operating voltage	16
Closed-Loop current control7	Output circuits	12
Commissioning9	Р	
Connection diagram8	Pin assignment	
encoder13	connector X1	11
inputs and outputs (I/O)11	connector X2	13
stepper motor14	connector X4	16
voltage supply16	connector X5	17
Connector X111	Pin assignment connector X3	14
Connector X213	Protective circuits	23
Connector X314	R	
Connector X416		4-
Connector X517	RS485 network	17
E	S	
Encoder13	Stepper motor	14
F	Т	
Functions6	Two-wire operation	17
I	V	
Input circuits12	Variants	5
Inputs and outputs (I/O)11	Voltage supply	16
11 pats and outputs (1/0)		