

Technical Datasheet DK-NP5-48

Contents

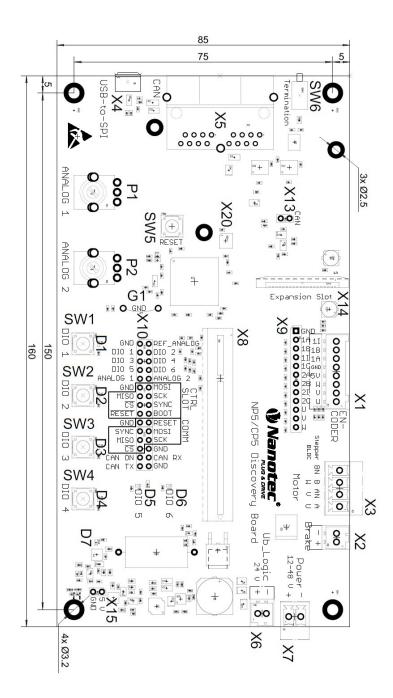
1 Connecting the NP5 control via the Discovery Board	3
1.1 Technical data – NP5 Discovery Board	
1.2 Dimensioned drawings – NP5 Discovery Board	
1.3 Pin assignment – NP5 Discovery Board	4
2 Commissioning the CANopen via the Discovery Board	9
3 Commissioning the SPI via the Discovery Board	10

1 Connecting the NP5 control via the Discovery Board

The NP5 Discover Board helps you during tests and during the evaluation of the NP5 control.

The connectors necessary for the boards are supplied already installed.

Jumper X13 must be set if CANopen (NP5-08) is used; otherwise, you must remove it..


1.1 Technical data – NP5 Discovery Board

Property	Description / value	
Operating voltage +UB:	12 48 V DC ±5%	
Logic voltage +UB_Logic:	24 V DC ±5%	
Current consumption +UB:	Max. 100 mA (without connected NP5)	
Current consumption +UB_Logic:	Max. 100 mA (without connected NP5)	
Communication interface:	SPI, CANopen	
Analog reference voltage:	3.3 V DC ±5%, max. 10 mA	
Digital input voltage:	Max. 3.3 V DC	
DC output voltage:	5 V DC ±3%, max. 300 mA	
Status indicator:	4x green LEDs for GPIO 1 to 4	
	2x blue LEDs for GPIO 5 and GPIO 6	
	1x green LED for Discovery Board (+3.3 V DC)	
Ballast resistor:	15 Ω/5 W	
Mounting holes:	4x Ø 3.2 mm for Discovery Board	
Weight:	0.12 kg	

1.2 Dimensioned drawings – NP5 Discovery Board

Dimensions are in [mm].

1.3 Pin assignment – NP5 Discovery Board

Connector	Function
X1	Encoder 1 and Hall sensor
X2	Brake
X3	Motor
X5	CAN
X6	Logic voltage
X7	Operating voltage
X8	Slot for NP5 controller
X9	Encoder 1/2 and Hall sensor
X10	GPIO and communication interface
X13	Jumper for activating / deactivating the CANopen communication

Connector	Function
X15	+5 V DC output
P1	Potentiometer for analog input 1
P2	Potentiometer for analog input 2 (for setting the node-ID and baud rate for CANopen, see also P2 - Analog input 2)
SW1 to SW4	Buttons for GPIO 1 to GPIO 4
SW5	Reset button for the Discovery Board
SW6	Switch for 120 ohm termination resistor (CANopen)
D1 to D6	Status indicator for GPIO 1 to GPIO 6
D7	Status indicator for the Discovery Board (+3.3 V DC)
G1	Earth connection

1.3.1 Connector X1 – encoder 1 and Hall sensor

Connector X1 has the following features:

- Connector type: Phoenix base strip, MCV-0,5/8-G-2,5
- Voltage level: +5 V logic level
- Maximum admissible current: Max. 300 mA (together with +5 V DC output voltage on pin header X15)
- Hall inputs: Internally by means of 2.7 k Ω pull-up resistor connected to +5 V DC

Pin	Name / function
1	Hall_U (H1)
2	Hall_V (H2)
3	Hall_W (H3)
4	+5 V DC
5	GND
6	ENC1_A
7	ENC1_B
8	ENC1_I

1.3.2 Connector X2 – brake

Connector X2 has the following features:

• Connector type: Phoenix base strip, MCV-0,5/2-G-2,5

Pin	Name / function
1	Brake + (connected with +UB)
2	Brake – (PWM-controlled open-drain output, max 1.5 A)

1.3.3 Connector X3 – motor

Connector X3 has the following features:

- Connector type: Phoenix base strip, MCV-1,5/4-G-3,5
- Max. rated current 6 A RMS
- Max. peak current 10 A RMS (for 1 s)

Pin	Stepper motor	BLDC motor
1	A	U
2	A\	V
3	В	W
4	B\	

1.3.4 Connector X4 - SPI via USB

A cable of type "micro USB" is needed for this USB connection.

1.3.5 Connector X5 – CANopen

Connector X5 has the following features:

• Connector type: RJ45 Duo Port, horizontal

Pin	Name / function
1	CAN+
2	CAN-
3	GND
4	N.C
5	N.C
6	CAN_Shield
7	GND
8	+UB_Logic (24 V DC ±5%)

1.3.6 Connector X6 – logic voltage

Connector X6 has the following features:

• Connector type: Phoenix base strip, MCV-0,5/2-G-2,5

Pin	Name / function
1	+UB_Logic (24 V DC ±5%)
2	GND

1.3.7 Connector X7 – operating voltage

Connector X7 has the following features:

• Connector type: Phoenix base strip, MCV-1,5/2-G-3,5

Pin	Name / function
1	+UB (12 48 V DC ±5%)
2	GND

1.3.8 Connector X9 – encoder and Hall sensors

Connector X9 has the following features:

- Connector type: Pin header, single row, RM 2.54 mm, 12-pin, vertical
- Voltage level: +3.3 V DC logic level

Pin	Name / function	
1	GND	
2	ENC1_A	
3	ENC1_B	
4	ENC1_I	
5	ENC1_CAP	
6	ENC2_A	
7	ENC2_B	
8	ENC2_I	
9	ENC2_CAP	
10	Hall_U (H1)	
11	Hall_V (H2)	
12	Hall_W (H3)	

1.3.9 Connector X10 – I/O and communication interface

Connector X10 has the following features:

• Connector type: Pin header, two rows, RM 2.54 mm, 2x 15-pin, vertical

Pin	Name	Туре	Note
1	GND	Earth	
2	U_REF_ANALOG	Out	Analog reference voltage
3	DIO1_IO_CS	I/O	General I/O
4	DIO2_CD_CLK	I/O	General I/O
5	DIO3_CD_DIR	I/O	General I/O
6	DIO4_IO_MOSI	I/O	General I/O
7	DIO5_IO_MISO	I/O	General I/O
8	DIO6_IO_CLK	I/O	General I/O
9	ADC_ANALOG_1	In	AD converter 1
10	ADC_ANALOG_2	In	AD converter 2
11	GND	Earth	
12	SLOT_SPI_MOSI	-	SPI 1
13	SLOT_SPI_MISO	-	SPI 1
14	SLOT_SPI_SCK	-	SPI 1
15	SLOT_SPI_CS	-	SPI 1
16	SLOT_SYNC	-	System function, reserved
17	SLOT_RESET	-	System function, reserved
18	SLOT_BOOT	-	System function, reserved
19	GND	Earth	
20	COMM_RESET	-	System function, reserved
21	COMM_SYNC	-	System function, reserved
22	COMM_SPI_MOSI	-	SPI 2

Pin	Name	Туре	Note
23	COMM_SPI_MISO	-	SPI 2
24	COMM_SPI_SCK	-	SPI 2
25	COMM_SPI_CS	-	SPI 2
26	GND	Earth	
27	CAN ON	-	CAN ON
28	I2CSCL_CANRX	-	I ² C Clock or CANopen RX
29	I2CSDA_CANTX	-	I ² C Data or CANopen TX
30	GND	Earth	

1.3.10 Connector X13 – jumper for activating / deactivating the CANopen communication

Connector X13 has the following features:

- Connector type: Pin header, RM 2.54 mm, 2-pin, vertical
- Bridged with jumper: CANopen activated
- Not bridged with jumper: CANopen deactivated

Pin	Name / function
1	+3.3V
2	CAN ON

1.3.11 Connector X15 – +5 V DC output

Connector X15 has the following features:

- Connector type: Pin header, RM 2.54 mm, 2-pin, vertical
- Maximum admissible current: Max. 300 mA (together with +5 V DC output voltage on pin header X1)

Pin	Name / function
1	+5 V DC
2	GND

1.3.12 P2 - Analog input 2

The node-ID and the baud rate are defined via analog input 2. You can find further details in the chapter commissioning of the NP5 technical manual on the homepage **us.nanotec.com**.

To use the factory settings, set the potentiometer to 0 (turn counterclockwise as far as it will go). The factory settings are:

Node-ID 1 and baud rate 1 Mbaud.

2 Commissioning the CANopen via the Discovery Board

To establish a connection with the NP5-08, proceed as follows:

- **1.** Plug in the *NP5-08* at X8.
- **2.** Plug the jumper at X13.
- 3. Set potentiometer P2 to 0 (counterclockwise as far as it will go)
- 4. Switch on the termination resistor (Switch SW6 ON).
- 5. Connect your CANopen cable to X2 an.
- 6. Connect your supply voltage to X7.

3 Commissioning the SPI via the Discovery Board

To establish a connection with the NP5-40, proceed as follows:

- 1. Plug in the NP5-40 at X8.
- 2. Unplug jumper X13.
- If you wish to establih communication via USB (Virtual COM-Port) install the driver *Nanotec_ComToSPI* and connect the USB cable to X4. If you wish to establih communication directly via SPI connect the SPI Master with the controller using the wires SCK (source clock), MOSI (master out, slave in), MISO (master in, slave out) and CS (chip select). Check that the GND of the Master and the controller are connected.
- 4. Connect your supply voltage to X7.